
VIETNAM NATIONAL UNIVERSITY HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Vo Van Hoang

ENHANCING INTRUSION DETECTION PERFORMANCE

BY DATA AUGMENTATION, PARALLEL ENSEMBLE INFERENCE,

AND FLOW SENSING STRATEGY

Major: Information Systems

Code: 9480104

SUMMARY OF THE PHD DISSERTATION

OF INFORMATION SYSTEMS

Supervisors:

Associate Professor Nguyen Ngoc Hoa

Associate Professor Nguyen Ngoc Tu

Ha Noi - 2025

The thesis was completed at: University of Engineering and Technology, Vietnam

National University, Hanoi.

Supervisor:

- Associate Professor, PhD Nguyen Ngoc Hoa

- Associate Professor, PhD Nguyen Ngoc Tu

Reviewer: Associate Professor, PhD Nguyen Linh Giang

Reviewer: Associate Professor, PhD Nguyen Long Giang

Reviewer: Professor, PhD Nguyen Hieu Minh

The dissertation is going to be defended before a National University-level Committee in

University of Engineering and Technology, Vietnam National University, Hanoi, on Decem-

ber, 2025.

PhD STUDENT SUPERVISORS

Vo Van Hoang Nguyen Ngoc Hoa Nguyen Ngoc Tu

CONFIRMATION OF THE TRAINING UNIVERSITY

Thesis can be found at:

- National Library of Vietnam.

- Library Information Center , Vietnam National University, Hanoi.

Introduction

Motivation

Cyberattacks are becoming more sophisticated, exposing the limitations of traditional signature- and

rule-based systems, which struggle with zero-day exploits, polymorphic malware, and high false alarms.

While ML and DL provide powerful alternatives, they face challenges such as noisy and imbalanced data,

feature redundancy, and poor interpretability. Moreover, many models fail to meet real-time and scalability

requirements in practice. To address these gaps, this dissertation proposes a roadmap unifying data balancing,

feature refinement, model optimization, and multimodel inference to build accurate, resilient, explainable,

and deployable AI-based intrusion and malware detection systems.

Research Challenges

This dissertation focuses on the following major challenges:

1. Challenge 1: Cybersecurity datasets are heavily imbalanced, with the vast majority of samples belong-

ing to benign traffic or a few common attack types, while rare but dangerous threats (e.g., infiltration,

exfiltration, and zero-day attacks) are underrepresented. This leads to biased model learning and poor

detection of minority attacks.

2. Challenge 2: Achieving high accuracy and low false positive rates in AI-powered intrusion detec-

tion systems, while maintaining overall system performance and interpretability, remains a persistent

challenge.

3. Challenge 3: For AI-powered intrusion detection systems to be operationally viable, they must process

large volumes of traffic at wire speed with minimal delay. However, the computational complexity of

machine learning models often hinders real-time deployment.

Research Objectives

• Objective 1: An overview of cyberattacks and the techniques used by hackers to carry out such attacks.

Research intrusion and malware detection techniques and analyze the advantages and disadvantages of

each method. Evaluate the results of the latest research related to the problem of intrusion detection.

• Objective 2: We propose a augmentation dataset method that aims to improve the quality of minority

attack samples, select the most representative samples from the majority classes; minimize training

noise by identifying important features within the dataset.

• Objective 3: Traditional intrusion detection methods often struggle with generalization and robustness

against novel or adversarial attacks. This objective aims to integrate neural networks with boost

models through soft voting and stacking strategies.

• Objective 4: AI-based detection systems often suffer from inference latency and limited scalability.

This objective aims to design a lightweight, high-throughput detection architecture with support for

flow-based sensing and parallel ensemble inference.

1

Introduction 2

Research Scope

To achieve the objectives of this dissertation, we focus on the following key areas:

1. Research data structures and class imbalance in intrusion detection datasets and study machine

learning and deep learning models for their effectiveness.

2. Research focuses on building lightweight high-throughput detection architectures suitable for real-time

deployment in large-scale networks.

Research Methodologies

This dissertation employs a systematic and layered research methodology, as outlined below:

• Theoretical Methodology: We conduct a comprehensive survey, synthesis, and evaluation of pre-

vious research relevant to intrusion detection and malware classification.

• Experimental Methodology: The proposed frameworks and algorithms are empirically validated

through extensive experiments on multiple benchmark datasets, including public and custom-prepared

corpora.

Research Contributions

The key contributions are as follows:

1. We propose methods for augmentation dataset and feature set optimization. The approach integrates

adversarial sample generation to enrich the minority class and employs filtering techniques to retain

only semantically meaningful samples from the majority class.

2. We propose an integrated ensemble architecture that combines neural networks with boosting classi-

fiers using both soft voting and stacking strategies. This hybrid framework leverages the complemen-

tary strengths of deep learning and tree-based models to enhance detection accuracy, robustness, and

interpretability.

3. We design and implement NetIPS, a lightweight and real-time intrusion detection and prevention

architecture optimized for large-scale network environments.

Thesis Structure

This dissertation is structured into four chapters:

• Chapter 1 This chapter presents essential background knowledge in intrusion and malware detection,

with an emphasis on machine learning, deep learning, and ensemble techniques.

• Chapter 2 proposes augmentation dataset methods for machine learning, focusing on addressing the

imbalance between minority and majority classes in the dataset.

• Chapter 3 focuses on improving machine learning models to enhance performance. The chapter pro-

poses combining and mutually reinforcing different types of models to increase intrusion detection

effectiveness and system robustness.

• Chapter 4 proposes a practical deployment approach for intrusion detection systems in large-scale

networks. A comprehensive process for intrusion detection is introduced that integrates both signature-

based and behavior-based analysis, along with execution and sampling strategies.

1 Preliminaries and Literature Reviews

1.1 Fundamental Concepts

1.1.1 Intrusion Detection System

Intrusion Detection Systems (IDS) are critical for monitoring network and host activities, with NIDS

analyzing traffic flows and HIDS focusing on endpoint behavior. Detection approaches range from signature-

based methods, effective only for known threats, to anomaly-based systems that detect novel intrusions but

suffer high false positives. Recent ML/DL techniques improve adaptability and malware detection via static

and dynamic analysis, yet challenges remain in data imbalance, obfuscation, and real-time deployment.

1.1.2 Common Types of Network Attacks

The summary of common network attack types show as Table 1.1.

1.1.3 Machine Learning in Cybersecurity

Machine learning (ML) has become a key enabler for modern cybersecurity by learning complex pat-

terns and adapting to evolving threats, surpassing the limitations of traditional rule-based detection. ML

techniques are used across tasks such as intrusion detection, malware classification, phishing detection, and

behavioral analysis. Despite their strengths, ML/DL models face challenges: data imbalance, limited gener-

alization, lack of interpretability, and real-time performance constraints.

1.1.4 Class Imbalance in Cybersecurity Dataset

Class imbalance is a major challenge in cybersecurity datasets, where benign samples vastly outnum-

ber malicious ones, and rare but critical attack types are often underrepresented. This skews ML model

performance, leading to poor recall on minority attack classes and high false negative rates.

1.1.5 Ensemble Learning in Intrusion Detection

Ensemble learning combines multiple base models to achieve better predictive performance, making it

highly effective for cybersecurity where attack patterns are diverse and evolving. By integrating models

through techniques like bagging, boosting, voting, and stacking, ensembles improve accuracy, generalization,

and resilience to adversarial evasion.

1.2 Approaches to Threat Detection

1.2.1 AI-powered Intrusion Detection

AI-based intrusion detection leverages machine learning (ML) and deep learning (DL) models to classify

network traffic flows as benign or malicious. Gradient boosting methods such as XGBoost and GBM have

proven effective in this domain by sequentially minimizing prediction errors and modeling complex attack

3

1.2. APPROACHES TO THREAT DETECTION 4

Table 1.1: Summary of Common Network Attack Types

Attack Type Technique Impact Detection

Denial-of-Service

(DoS/DDoS)

Traffic floods, amplification Service unavailability Rate limiting, filter-

ing

Scanning & Enumer-

ation

Port/vulnerability scans Reconnaissance IDS, anomaly detec-

tion

Spoofing IP/ARP/DNS falsification Evasion, redirection Authentication,

ARP/DNS security

Man-in-the-Middle

(MitM)

Interception, SSL stripping Data theft, manipu-

lation

Encryption, certifi-

cate pinning

Sniffing/ Eavesdrop-

ping

Passive/active traffic cap-

ture

Credential leakage TLS, VPN

Replay/Session Hi-

jacking

Packet replay, session ID

theft

Unauthorized access Token/session man-

agement, TLS

Malware Propaga-

tion

Worms, trojans, ran-

somware

Compromise, data

loss

Antivirus, sandbox-

ing

Phishing/Social En-

gineering

Deceptive messages, psycho-

logical tricks

Credential theft, ini-

tial access

User training, email

filtering

SQLi/XSS/CSRF Web input manipulation Data theft, deface-

ment

Input validation,

WAF

APT Multi-stage, stealthy infil-

tration

Espionage, long-term

theft

Behavior analytics,

EDR

Supply Chain Third-party compromise Widespread breach Vendor management,

code review

Insider Threat Privileged misuse, data ex-

filtration

Confidentiality

breach

Monitoring, least

privilege, DLP

patterns. Deep neural networks (DNNs) excel at capturing nonlinear relationships in traffic data through

multi-layer representations. Each ML/DL model offers unique strengths; combining them through ensemble

learning improves detection accuracy and resilience against adversarial attacks.

1.2.2 AI-powered Malware Detection

For AI-powered malware detection, define D as the dataset composed of pairs (v, y), where v is the

representation of a feature vector of a PE file and y ∈ {0, 1} is the associated label (e.g., 0 for benign, 1

for malware), respectively. Thus, D = (v1, y1), (v2, y2), ..., (vM , yM) with M representing the total number

of samples. The problem is to train a generalized AI model f : Rn =⇒ 0, 1 on the dataset D such that,

for any new PE file, its feature vector v is mapped to a predicted label ŷ = f(v). The goal is to maximize

the accuracy of f while generalizing well beyond the training dataset, thus enabling the reliable detection of

malware in unseen PE files.

1.3. RELATED WORK 5

1.2.3 Handling Imbalanced Datasets

Most datasets suffer from severe class imbalance, with benign traffic dominating and attack flows un-

derrepresented. This imbalance degrades both model training and prediction accuracy. To address this, data

balancing techniques are employed such as undersampling the majority class and oversampling the minority

class.

1.3 Related Work

1.3.1 Deep and Boosting Learning for Intrusion Detection

A summary of these methods and their performance is provided in Table 1.2.

Table 1.2: Summary of Related Works based Intrusion Detection

Method Venue Approach Dataset Acc(%)

RF+ miniVG-

GNet [?]

IEEE Access 2020 Combination of K-Means and ENN to balance

dataset then RF+ miniVGGNet to detect intru-

sions.

NSL-KDD,

CIC-IDS2018

82.84,

96.99

WGAN+

LightGBM [?]

Computer Science

2021

Applying WGAN-GP for data generation on mi-

nority class samples and using LightGBM for the

classification.

NSL-KDD,

CIC-IDS2018

99.00,

96.00

MMM-RF [?] Computer & Secu-

rity 2022

Use CFS to analyze network traffic, T-SNE to

minimize data dimension, and SMOTE to imbal-

ance the CSE-CIC-IDS2018 dataset.

CIC-IDS2018 99.98

CNN, DBNs,

LSTM [?]

Computers and

Electrical Engi-

neering 2022

Transforms the traffic flow features into waves

and utilizes advanced audio/speech recognition

deep-learning-based techniques to detect intrud-

ers.

CIC-IDS2017,

NSL-KDD

99.21,

84.82

CNN+LSTM

[?]

Digital Communi-

cations and Net-

works 2023

Used SMOTE to balance abnormal traffic, CNN

to extract deep features, then CNN-LSTM to de-

tect intrusions.

UNSW.NB15,

CIC-IDS2017,

NSL-KDD

99.21,

99.32,

98.45

FFO+PNN [?] Alexandria Engi-

neering Journal

2023

Used the FFO technique to extract features and

PNN to classify categories.

NSL-KDD 98.99

CNN+EQL [?] Computer Com-

munications 2023

Used CNN and the Attention mechanism mingle

to form a CA Block focusing on local spatiotem-

poral feature extraction and EQL v2 to increase

the minority class weight and balance the learn-

ing attention on minority classes.

UNSW.NB15,

NSL-KDD,

CIC-IDS2017,

CIC-

DDoS2019

89.39,

99.77,

99.88,

99.58

PIGNUS [?] Computer & Secu-

rity 2023

Use Auto Encoders to select optimal features and

Cascade Forward Back Propagation Neural Net-

work for classification and attack detection.

NSL-KDD 99.02

1.4. DATASET COLLECTION 6

1.3.2 Deep and Boosting Learning for Malware Detection

A summary of these methods and their performance is provided in Table 1.3.

Table 1.3: Summary of Related Works based Malware Detection

Method Venue Approach Dataset Acc(%)

CNN [?] Distributed Computing

and Artificial Intelli-

gence 2021

The method in this study converts binary files into

grayscale images to detect malware. The model

also integrates an attention mechanism to identify

suspicious parts within the file.

EMBER

2018

94.00

DNN [?] Procedia Computer Sci-

ence 2022

This method builds an improved offensive genera-

tive model based on GANs to strengthen the cur-

rent DNN-based system.

EMBER

2018

97.42

CNN [?] International Journal of

Computer Network and

Information Security

2022

This method employs feature extraction, data

standardization, and data cleaning techniques to

address imbalances and impurities within the

dataset.

EMBER

2017 & 2018

97.53,

94.09

EII-MBS

[?]

Computers & Security

2022

This technique finds patterns in how instructions

relate to each other and turns this information into

vector representations to classify malware families.

BODMAS 99.29

XGB-

CATB-

EXT [?]

Computer, Material &

Continua 2023

The technique in this study utilizes a model com-

bining supervised and unsupervised learning to

improve malware detection. Specifically, k-means

clusters the data before a set of ML algorithms

classifies it.

EMBER

2018

96.77

MD-ADA

[?]

Computers & Security

2024

This approach combines CNN-based image embed-

dings and adversarial domain adaptation (using

GANs) to classify malware.

BODMAS 99.29

FCG-

MFD [?]

Journal of Network and

Computer Applications

2025

This method uses function call graphs and

node2vec along with ideas from NLP to help clas-

sify malware families.

BODMAS 99.28

1.3.3 Data Augmentation

To resolve imbalanced dataset, several techniques are employed such as undersampling the majority class

and oversampling the minority class, etc.

1.4 Dataset Collection

This dissertation employs several widely used public datasets: The CSE-CIC-IDS2018; NSL-KDD; EM-

BER2017 and EMBER2018 and BODMAS datasets.

1.5. EVALUATION METRICS 7

1.5 Evaluation Metrics

We use standard metrics computed from the confusion matrix, such as: Acc; Prec; Rec; etc.

1.6 Research Gaps and Approach Direction

• Research Gap 1: Most real-world intrusion detection datasets suffer from severe class imbalance, where

minority attack classes are underrepresented and difficult to learn.

Approach Direction (chapter 2): To address these limitations, we propose augmentation dataset meth-

ods that enhances both the quantity and quality of training dataset, optimizing feature space.

• Research Gap 2: Although recent studies have proposed various approaches to optimize machine

learning models for intrusion detection, model optimization remains a persistent challenge in machine

learning applications.

Approach Direction (chapter 3): We design a mutual deep+boosting ensemble inference pipeline that

leverages the complementary strengths of diverse models to enhance overall performance and reduce

vulnerability to model poisoning.

• Research Gap 3: Despite recent advances, most IDS models remain unsuitable for high-throughput

environments due to computational bottlenecks, static detection logic, and lack of adaptive flow

control. Traditional detection frameworks are unable to meet real-time latency constraints or scale to

modern enterprise or ISP-level networks.

Approach Direction (chapter 4): We propose a scalable and low-latency intrusion prevention system

called NetIPS, built upon parallelized deep and boosting models integrated with flow-sensing opti-

mization and sandbox analysis.

1.7 Summary

In summary, this chapter has identified the key research challenges and objectives in intrusion and

malware detection and outlined the main scientific contributions and research roadmap of the dissertation.

The mapping between these contributions and the corresponding technical chapters has also been presented,

providing a clear structure for the remainder of this work.

2 Enhancing AI-powered Intrusion Detection

with Data Augmentation and Feature Op-

timization

2.1 Problem Statement

We introduces two complementary solutions: (i) an adaptive data augmentation pipeline that compresses

majority classes and generates realistic minority samples to improve balance and diversity, and (ii) a SHAP-

based Optimized Feature Set (OFS) method that prunes irrelevant features, enhances interpretability, and

reduces computational overhead.

2.2 Approach Direction

To address the two major challenges of class imbalance and feature redundancy in intrusion detection

datasets, we introduce augmentation dataset methods aimed at enhancing the learning capacity of AI models

in practical cybersecurity contexts. The proposed approach is designed to simultaneously address the problem

of insufficient dataset in minority classes, select high-quality samples from majority classes, and identify

valuable features in datasets with large numbers of features, issues that are commonly encountered in real-

world datasets.

2.3 Training Dataset Augmentation
2.3.1 Difficulty-Aware-based Data Augmentation

We propose a method based on the concept of the DSSTE algorithm proposed by [?] to augment the

training dataset. Our algorithm is named AugDS and is shown in 2.1.

2.3.2 AWGAN-based Data Augmentation

To solve the issue of the unbalanced dataset in IDS, our augmented WGAN method, AWGAN, generates

realistic samples for minority classes using WGAN, the AWGAN is depicted in Figure 2.1a and is described

formally in 2.2.

2.4 Feature set Optimization
2.4.1 Feature Extraction and Cleaning

Feature extraction and cleaning are essential to reduce computational cost and avoid noisy or duplicate

data that cause overfitting. Our approach removes null or duplicate records, ensuring only unique and relevant

entries remain in the dataset.

2.4.2 Feature Vectorizing

Raw data, often in JSON format, must be transformed into numerical vectors for AI model training. To

achieve this, we apply feature hashing, which maps tokens into fixed-length vectors while preserving data

characteristics [?]. Using kernel and sign hash functions, features are vectorized, normalized, and stored

8

2.5. EXPERIMENTS AND EVALUATION 9

Algorithm 2.1 AugDS: Build the Augmented Dataset
Input: F - Raw Dataset, represented by a list of feature vectors; K - scaling factor

Output: T - Augmented Dataset;

1: L ← ComputeLabels(F) ▷ Get all labels of dataset F

2: F ← Normalize(F) ▷ normalizing all feature vectors

3: ES = EditedNearestNeighbours(RT, |L|) ▷ determining the easy sets ES by finding L nearest neighbours samples

4: DS = RT \ ES ▷ difficult set DS is the rest of RT

5: Majors,Minors ← ComputeMajMin(DS)

6: Smaj ← ∅, Smin ← ∅
7: for each M ∈ Majors do ▷ Compression Step

8: C ← Clustering(M, |L|) ▷ computing the centroids C of |L| clusters by using KMeans algorithm

9: M ← Compress(M,C, τ) ▷ compressing majority samples using centroids C of L clusters

10: Smaj ← Smaj ∪M

11: end for

12: for each M ∈ Minors do ▷ Zooming Step

13: for each m ∈ range(K,K + number
NSmin

) do ▷ Zooming Step, NSmin
is number sample in Smin.

14: M ← Zoom(m) ▷ zoom range is [1 − 1
K

, 1 + 1
K

] on both continuous and categorical features.

15: Smin ← Smin ∪M

16: end for

17: end for

18: T = ES ∪ Smaj ∪ Smin ▷ synthese of new dataset T

19: return (T)

Normalization

Minority classes

WGAN
Sampling

New samples

ValidationBackpropagation
minimize error

Raw dataset

Raw train dataset

Testing set

Training set

K-Means-based
Compression

Majority classes

RandomSplit

(a)

Attacker Network 1 Attacker Network 2 Attacker Network 3

DBMS DMZ Network

PCAP capture

Web Application Server

(b)

Figure 2.1: (a) AWGAN-based data augmentation framework; (b) SQL injection attack generation testbed.

in CSV. Finally, categorical attributes are encoded via label encoding and one-hot encoding (using Keras),

ensuring compatibility with ML models such as GBM and neural networks.

2.4.3 Feature Normalization

Normalizing the features centers them around zero with a unit standard deviation, facilitating the learn-

ing process of the ML algorithm. This normalization technique helps speed up convergence and improve the

model’s overall performance.

2.4.4 SHAP-based Feature Set Optimization

Our method, Optimizing Features using SHAP (OFS), selects the most important subset of features from

training data by combining model performance with explainability. The general pseudocode to optimize the

set of features using SHAP is presented in 2.3.

2.5 Experiments and Evaluation
2.5.1 Dataset Preparation

• DS1:CSE-CIC-IDS2018 and NSL-KDD datasets.

To augment SQL-injection detection, we also built a testbed system, as shown in Figure 2.1b, to add

more detection ability. Finally, based on our dataset preparation process, we obtain two augmented

2.5. EXPERIMENTS AND EVALUATION 10

Algorithm 2.2 AWGAN: Create the Training & Testing Sets by Augmented WGAN
Input: F - Raw Dataset, represented by a list of feature vectors.

r - ratio between training and testing sets; default is 7:3.

τ - maximum samples in a label.

Output: T - Training Set; V - Testing Set.

1: L ← GetLabels(F) ▷ Get all labels of dataset F .

2: F ← Normalize(F) ▷ Normalize all feature vectors.

3: (RT, V) ← SplitTrainTest(F, r) ▷ Split F randomly into the raw training set RT and testing set V with ratio of r.

4: (Smaj, Smin) ← GetClasses(RT) ▷ Determine majority classes (Smaj) and minority classes (Smin) from RT

5: T ← ∅
6: for each M ∈ Smaj do ▷ Compression each majority class

7: C ← Clustering(M, |L|) ▷ Compute the centroids C of |L| clusters by using ENN

8: M ← Select(M,C, τ) ▷ Compress majority samples using C of L clusters

9: T ← T ∪M

10: end for

11: for each M ∈ Smin do ▷ Generate samples for minority classes by WGAN

12: while |M| < τ do

13: S ← WGAN_Sampling(M) ▷ Generate new samples

14: M = Denoise(M,S) ▷ Eliminate noise samples

15: end while ▷ Repeat until get enough samples τ.

16: T ← T ∪M ▷ Add realistic samples to T

17: end for

18: return (T, V)

Algorithm 2.3 OFS: Optimizing Feature Set Using SHAP
Input: DS - dataset with the feature set F ; M - m AI models; τ - threshold to drop features.

1: X, y ← DS ▷ Get dataframes for features and labels

2: X ← Normalize(X) ▷ Normalize all features to [0,1]

3: FS ← ∅ ▷ Init the feature set list.

4: for each m ∈ M do ▷ Determine the feature importance for each AI model m.

5: AI ← m.fit(X, y) ▷ Train m using the dataset.

6: if m is a boosting model then

7: shap_valuesm ← SHAP.TreeExplainer(m) ▷ Compute the SHAP values of all features based on decision tree model.

8: else

9: shap_valuesm ← SHAP.DeepExplainer(m) ▷ Compute the SHAP values of all features based on DL model.

10: end if

11: FS.push(shap_valuesM) ▷ Push the Shapley values of the model M into the list FS.

12: end for

13: OFS ← ∅
14: for each f ∈ F do

15: shap_values ← FS[f] ▷ Get SHAP values of feature f on all models M.

16: if shap_values ≥ τ then

17: OFS ← OFS ∪ f ▷ Consider f being important and add to OFS in the case of all its SHAP values ≥ τ.

18: end if

19: end for

Output: OFS - Optimized Feature Set.

datasets DS1, illustrated in Table 2.1. Note that DS1 datasets will be comprehensively evaluated

in chapter 3.

• DS2: We also selected CSE-CIC-IDS2018 and NSL-KDD to experimentally evaluate the effectiveness

of 2.2. Finally, Table 2.1 summarizes the number of samples for each class of both datasets.

• DS3: EMBER2017, EMBER2018, and BODMAS, to experimentally evaluate the effectiveness of 2.3,

the output constitute DS3.

We use six thresholds: 0.1, 0.075, 0.05, 0.25, 0.01, and 0.001. For each threshold, features with SHAP

values ≥ the chosen threshold are selected, shown as Figure 2.2 and Figure 2.4a. We found that the

threshold of 0.025 gives the best result, shown as Figure 2.3.

2.5.2 Results and Evaluation

• S1: We thoroughly evaluate 2.1 on the DS1 to investigate its effectiveness in addressing class imbalance.

• S2: The AWGAN 2.2 is evaluated on DS2 to rigorously assess its ability to generate realistic and

diverse synthetic samples for minority classes.

• S3: The OFS 2.3 is examined using the DS3, with a focus on static malware detection tasks.

2.5. EXPERIMENTS AND EVALUATION 11

Table 2.1: Comparison of difficulty-aware augmentation (a) and AWGAN-based augmentation (b)

(a) Difficulty-Aware-based Data Augmentation

Class Original Train Test

CSE-CIC-IDS2018

Benign 4, 360, 029 20, 000 6, 000

Bot 282, 310 20, 000 6, 000

DDoS-HOIC 668, 461 20, 000 6, 000

DoS-GoldenEye 41, 455 20, 000 6, 000

DoS-Hulk 434, 873 20, 000 6, 000

Infiltration 160, 604 20, 000 6, 000

SQL-Injection 26, 797 20, 000 6, 000

DoS-SlowHTTPTest 19, 462 13, 623 4, 491

DoS-Slowloris 10, 285 14, 826 2, 373

DDoS-LOIC-UDP 1, 211 1, 588 279

BruteForce-Web 253 978 58

BruteForce-XSS 151 106 35

NSL-KDD

Benign 61, 343 20, 000 6, 000

DoS 39, 927 20, 000 6, 000

Probe 8, 153 20, 000 1, 881

R2L 697 4, 467 161

U2R 36 36 8

(b) AWGAN-based Data Augmentation

Class Original Train Test

CSE-CIC-IDS2018

Benign 4, 360, 029 14, 000 6, 000

Infiltration 160, 604 14, 000 6, 000

Bot 282, 310 14, 000 6, 000

DDoS-HOIC 668, 461 14, 000 6, 000

DoS-GoldenEye 41, 455 14, 000 6, 000

DoS-Hulk 434, 873 14, 000 6, 000

DoS-SlowHTTPTest 13, 067 14, 000 4, 082

DoS-Slowloris 6, 977 14, 000 2, 093

DDoS-LOIC-UDP 1, 120 14, 000 336

BruteForce-Web 261 14, 000 78

BruteForce-XSS 97 14, 000 29

SQL-Injection 53 14, 000 17

NSL-KDD

Benign 61, 343 14, 000 6, 000

DoS 39, 927 14, 000 6, 000

Probe 8, 333 14, 000 2, 500

R2L 637 14, 000 191

U2R 40 14, 000 12

(a) XGB Feature Important Score (b) GBM Feature Important Score (c) CBT Feature Important Score (d) CNN Feature Important Score

Figure 2.2: SHAP-based Feature Important Scores on EMBER2018 Dataset

S1 Results

The summarized in Table 2.1. The effect is also visible in the t-SNE visualizations: before and after the

balance shown in Figure 2.5a, and Figure 2.5b.

S2 Results

The Table 2.1 summarizes the number of samples per class in both datasets. The individual models

shown as Table 2.2. Figure 2.6a show the original data before performing AWGAN-based augmentation,

while Figure 2.6b illustrate the augmented training sets.

Table 2.2: Evaluation of AI models on WGAN-based Data Augmentation (%)

Metric
CSE-CIC-IDS2018 NSL-KDD

XGB CBT GBM BME DNN XGB CBT GBM BME DNN

F1 99.77 99.92 99.95 99.77 97.75 99.48 99.21 99.48 99.48 98.00

Acc 99.76 99.92 99.96 99.98 97.54 99.49 99.22 99.56 99.43 98.07

Prec 99.83 99.93 99.96 99.98 98.20 99.49 99.21 99.49 99.41 98.03

Rec 99.76 99.92 99.96 99.98 97.54 99.49 99.22 99.49 99.43 98.07

FPR 0 0 0.03 0 0.13 0.67 1.27 0.63 0.77 1.22

FNR 0 0.01 0 0 1.37 0.37 0.39 0.30 0.32 2.26

AUC 100 100 99.99 99.99 98.69 99.99 99.98 99.99 99.89 99.85

2.5. EXPERIMENTS AND EVALUATION 12

(a) XGB (b) GBM (c) CBT

Figure 2.3: Threshold-based Performances on EMBER2018 Dataset

0.100 0.075 0.050 0.025 0.010 0.001
Threshold

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

XGB
GBM
CBT
CNN

(a)

Metric
CSE-CIC-IDS2018 NSL-KDD

DNN XGB GBM DNN XGB GBM

Acc 99.73 99.58 99.74 98.80 99.66 99.43

Prec 99.80 99.59 99.59 98.84 99.66 99.44

F1 99.66 99.58 99.58 98.80 99.66 99.43

Rec 99.73 99.58 99.58 99.80 99.66 99.43

AUC 99.96 100 100 99.84 100 99.92

(b)

Figure 2.4: (a) Threshold-based performance on BODMAS dataset; (b) Evaluation results of AI models on

difficulty-aware data augmentation.

S3 Results

Table 2.3: Evaluation of AI models on Original Datasets(%)

Method F1 Acc Prec Sens FAR FNR

EMBER2017 Evaluation

XGB 99.16 99.16 99.16 99.16 0.84 0.84

CBT 99.27 99.27 99.27 99.27 0.73 0.73

GBM 98.67 98.67 98.67 98.67 1.33 1.33

CNN 95.95 96.04 93.72 95.95 3.35 4.05

EMBER2018 Evaluation

XGB 97.63 97.63 97.63 97.63 2.37 2.37

CBT 97.19 97.19 97.19 97.19 2.81 2.81

GBM 97.80 97.80 97.80 97.80 2.20 2.20

CNN 94.03 94.02 94.16 94.02 5.97 5.98

BODMAS Evaluation

XGB 98.71 98.69 99.68 97.75 0.32 2.25

CBT 98.94 98.93 99.88 98.02 0.12 1.98

GBM 98.90 98.89 99.94 97.88 0.06 2.12

CNN 98.90 98.89 99.87 97.96 0.13 2.04

2.6. SUMMARY 13

(a) Original (b) Augmented

(a) CSE-CIC-IDS2018 Training Set

(a) Original (b) Augmented

(b) NSL-KDD Training Set

Figure 2.5: Visualization results of Difficulty-Aware-based Data Augmentation

(b) Augmented(a) Original

(a) CSE-CIC-IDS2018 Training Set

(b) Augmented(a) Original

(b) NSL-KDD Training Set

Figure 2.6: AWGAN-based visualization
Table 2.4: Evaluation of AI models based Features set Optimization (%)

Method F1 Acc Prec Sens FAR FNR F1 Acc Prec Sens FAR FNR

BODMAS (4 features) BODMAS (165 features)

XGB 89.76 90.78 85.19 94.85 4.82 5.15 99.28 99.39 99.28 99.28 0.61 0.72

CBT 89.76 90.77 85.17 94.86 4.83 5.14 99.26 99.37 99.29 99.23 0.71 0.77

GBM 89.76 90.78 85.16 94.89 4.80 5.11 99.13 99.26 99.09 99.16 0.74 0.84

CNN 88.03 88.95 81.77 95.34 4.66 4.66 99.13 99.26 99.02 99.24 0.76 0.74

EMBER2018 (170 features) EMBER2018 (565 features)

XGB 97.59 97.59 97.84 97.34 2.16 2.66 97.67 97.68 97.97 97.37 2.17 2.63

CBT 97.45 97.45 97.52 97.37 2.25 2.53 97.52 97.52 97.58 97.46 2.26 2.54

GBM 97.85 97.86 97.23 97.47 2.13 2.53 97.88 97.89 98.34 97.42 2.16 2.58

CNN 95.72 95.72 95.71 95.73 4.03 4.27 95.72 95.90 95.64 95.19 4.08 4.81

To evaluate the effectiveness of our feature optimization and data balancing strategies, we compare the

model performance in the original datasets shown in Table 2.3 and in the optimized feature sets shown in

Table 2.4 for EMBER2018 and BODMAS dataset.

2.6 Summary

These research results have been partially presented in published works, including three articles in

respected journals (VVH-J2, VVH-J1, VVH-j3) and two conference paper (VVH-C2, VVH-C4), highlighting

the novel and important contributions discussed in this chapter. Specifically, VVH-J2 presents an algorithm

that addresses the challenge of class imbalance in network intrusion datasets through data compression and

zooming techniques. VVH-J1 and VVH-C4 propose GAN-based methods capable of generating new samples

to augment the minority class, thus mitigating data imbalance. VVH-j3 introduces a feature optimization

approach to improve the quality of the dataset.

3 Enhancing AI-powered Intrusion Detection

with Mutual Deep and Boosting Inference

3.1 Problem Statement

Single-model approaches often result in unstable performance and weak resilience to adversarial threats.

To address this, we propose an ensemble framework combining deep and boosting models through soft voting

and stacking, improving accuracy, robustness, and efficiency. This unified approach enhances detection of

both common and sophisticated attacks, making it practical for real-world deployment.

3.2 Network Intrusion Detection via AI-Powered Deep Analysis

3.2.1 Direction Approach

We developed the SDAID solution, a comprehensive network intrusion detection approach that uses deep

AI-powered analysis to identify anomalous behavior, as illustrated in Figure ?? and 3.1.

3.2.2 Network Traffic Flow Modeling

We propose using CICFlowMeter to perform the feature extraction task.

3.2.3 DNN-based Intrusion Detection Algorithm

Our DNN model is depicted in Figure ??.

3.2.4 Boosting-based Intrusion Detection Algorithm

Boosting algorithms, such as XGBoost, build models sequentially where each new tree corrects the

errors of the previous ones, achieving high accuracy and scalability. By tuning hyperparameters, we reduce

overfitting and enhance generalization.

3.2.5 Hyperparameter Optimization

We select the model parameters based on a technique called Hyperparameter Optimization [?]. The

optimal values are also illustrated in Table 3.1.

3.2.6 Experiments and Evaluation

For the experimental environment, we use the setup presented in section 2.5.

To evaluate PAID 3.1, we perform the two scenarios described as follows:

• Scenario S1: CSE-CIC-IDS2018 dataset to train PAID.

• Scenario S2: We evaluate the PAID based on NSL-KDD.

14

3.2. NETWORK INTRUSION DETECTION VIA AI-POWERED DEEP ANALYSIS 15

(a)

(b)

Figure 3.1: (a) Network intrusion detection using AI-powered deep analysis; (b) DNN-based intrusion detec-

tion.

Algorithm 3.1 PAID: Perform an Ensemble Learning for AI-powered Intrusion Detection
Model: XGB - XGB trained model; DNN - DNN trained model; GBM - GBM trained model

Input: f - traffic flow.

Output: (msg, IoC) - (alert message; generated new IoC)

1: R ← ∅
2: F ← CICFlowMeter(f) ▷ extract 83 features of traffic flow f

3: Fin ← F\[FlowID, SrcIP, SrcPort, Label] ▷ remove 4 unused features

4: Cats ← [DstPort, Protocol] ▷ Categorical Variables

5: Conts ← Fin \ Cats ▷ 77 Continuous Variables

6: Perform three processes P1,P2,P3:

7: P1: dnn_preds ← DNN.predict(Cats, Conts) ▷ perform the prediction using DNN model

8: P2: xgb_preds ← XGB.predict(Cats, Conts) ▷ perform the prediction using XGB model

9: P3: gbm_preds ← GBM.predict(Cats, Conts) ▷ perform the prediction using GBM model

10: Wait P1, P2, P3 finished.

11: avgs ← (xgb_preds + dnn_preds + gbm_preds)/3)

12: FC ← avgs.argmax(axis = 1) ▷ get the flow labels from 0 to 11

13: if FC! = 0 then ▷ classified as network attacks

14: msg ← Alert(FC) ▷ constitute an alert by using metadata from the flow f; set alert category being as label

15: R ← IoCGenerator(FC) ▷ generate a new IoC to handle the next similar flows

16: end if

17: return msg; IoC

S1 Results

The confusion matrix illustrates the results of our experiment performed with the PAID method, shown

in Table 3.2a and the first part of Table 3.3.

S2 Results

We consequently indicate this experiment results for the PAID as the confusion matrix shown in Ta-

ble 3.2b and the second part of Table 3.3.

3.2.7 Comparison with SOTAs

The comparison of intrusion detection performance between PAID and SOTA is summarized in Table 3.4.

3.3. MALWARE DETECTION VIA MUTUAL DEEP AND BOOSTING ENSEMBLE LEARNING 16

Table 3.1: Hyperparameter Optimization

Model Hyperparameter Value Optimal

DNN

Learning rate [0.001, 1.0] 0.003

Batch size [16, 32, 48, 64, 96, 128] 64

Epochs [1, 2, ..., 15, 16] 5

Layers [[200, 100], ..., [1000, 500]] [400, 200]

XGB

Learning rate [0,1] 0.01

n_estimators [1,∞] 30

max_depth [0,∞] 6

GBM

Learning rate [0,1] 0.02

min_samples_leaf [1,∞] 30

max_depth [0,∞] 9

Benign
5999
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

Bot
0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-Web
0
0%

0
0%

58
95%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-XSS
0
0%

0
0%

0
0%

34
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

DDOS-HOIC
0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-LOIC-UDP
0
0%

0
0%

0
0%

0
0%

0
0%

279
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-GoldenEye
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-Hulk
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

DoS-SlowHTTPTest
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

4491
100%

0
0%

0
0%

0
0%

DoS-Slowloris
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

2373
100%

0
0%

0
0%

Infiltration
7
0%

0
0%

3
5%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

5989
100%

0
0%

SQL-Injection
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

T
ru
e
L
a
b
el

Predicted Label

(a) Confusion matrix of S1 evaluation.

DoS
6000
100%

0
0%

0
0%

0
0%

0
0%

Probe
0
0%

1874
100%

0
0%

0
0%

7
0%

R2L
0
0%

0
0%

151
100%

1
14%

9
0%

U2R
0
0%

1
0%

0
0%

6
86%

1
0%

Benign
4
0%

6
0%

0
0%

0
0%

5990
100%

T
ru
e
L
ab

el

Predicted Label

(b) Confusion matrix of S2 evaluation.

Table 3.2: Confusion matrices of malware detection evaluations: (a) S1 dataset and (b) S2 dataset.

3.3 Malware Detection via Mutual Deep and Boosting Ensemble

Learning

3.3.1 Approach Direction

We apply ensemble learning, including soft voting and stacking, to build binary classification mod-

els for malware detection. The method we propose in this study is called MDOB, an acronym for “En-

hancing Resilient and Explainable AI-Powered Malware Detection using Feature Optimization and Mutual

Deep+Boosting Ensemble Learning." Figure 3.2a illustrates the comprehensive architecture of our MDOB

method.

3.3.2 Mutual Deep and Boosting Learning

We propose a mutual learning that integrates deep learning (DL) and gradient boosting models (GBM)

for malware detection, leveraging AutoGluon for model selection, tuning, and optimization. By combining

both, our system enhances accuracy, robustness, and adaptability against evolving threats.

3.3. MALWARE DETECTION VIA MUTUAL DEEP AND BOOSTING ENSEMBLE LEARNING 17

Table 3.3: Performance Evaluation based Network Intrusion Detection

Metric
S1 (CSE-CIC-IDS2018) S2 (NSL-KDD)

DNN XGB GBM PAID DNN XGB GBM PAID

Acc 99.73 99.58 99.74 99.97 98.80 99.66 99.43 99.69

Prec 99.80 99.59 99.59 99.97 98.84 99.66 99.44 99.69

F1 99.66 99.58 99.58 99.97 98.80 99.66 99.43 99.69

Rec 99.73 99.58 99.58 99.97 99.80 99.66 99.43 99.69

AUC 99.96 100 100 100 99.84 100 99.92 99.99

Table 3.4: Comparison of PAID with other SOTA methods

Method Acc Prec F1 Rec

CSE-CIC-IDS2018-based Evaluation

PAID (our) 99.97 99.97 99.97 99.97

WGAN+IDR [?] − 99 98 97

RANet [?] 96.73 − 96.59 96.73

Adaboost [?] 99.69 99.70 99.70 99.69

Autoencoder [?] 99.20 95.00 - 98.90

AUE [?] 97.90 98.00 98.00 98.00

DSSTE + miniVGGNet [?] 96.99 97.46 97.04 96.97

LSTM + AM + SMOTE [?] 96.20 96.00 93.00 96.00

NSL-KDD-based Evaluation

PAID (our) 99.69 99.69 99.69 99.69

Autoencoder [?] 99.20 - - 99.27

Multiple LSTM [?] 98.94 - - 99.23

SMO [?] 96.20 - - -

RANet [?] 83.23 − 82.57 83.23

DNN [?] 78.50 81.00 76.50 78.50

3.3.3 Combination of Voting and Stacking Ensemble Learning

Algorithm 3.2 VSEL: Combination of Voting and Stacking Ensemble Learning
Input: TD = {(Xi, yi)}Ni=1 - training dataset with optimized features; MS = {M1,M2, ...,Mm} - set of m base models; model_params - optimized

hyperparameters of m AI models; K - number of folds for building meta training dataset (MTD).

1: MTD ← ∅ ▷ Init MTD

2: {TD1, TD2, ..., TDK} ← Split(TD,K) ▷ Split the training dataset into K folds

3: for each fold k ∈ 1..K do

4: TDtrain ← TD \ TDk; TDval ← TDk ▷ Use K − 1 folds for training and 1 fold for validation

5: for each Mi ∈ MS do

6: Mi ← Train(Mi, TDtrain,model_params[Mi])

7: end for

8: for each (X, y) ∈ TDval do

9: meta ← ∅; vote_sum ← 0 ▷ Create the meta-feature vector

10: for each Mi ∈ MS do

11: pi ← Mi(X) ▷ Predict the probability for X using the trained base model Mi

12: meta.push(pi)

13: vote_sum ← vote_sum + pi

14: end for

15: pvote ← vote_sum/m ▷ Calculate soft voting prediction from all base models

16: meta.push(pvote) ▷ Add soft voting result as an additional feature m+1 in the meta-layer

17: MTD.push(meta, y) ▷ Add the meta-feature vector and corresponding label to MTD

18: end for

19: end for

20: MM ← AutoML.SelectBestModel(MTD) ▷ Perform AutoML on MTD to select the best as the meta model

21: for each Mi ∈ MS do

22: Mi ← Train(Mi, TD,model_params[Mi]) ▷ Retrain all base models on the whole training dataset to be used in final prediction

23: end for

Output: MS - n trained AI models; MM - trained meta model.

Our approach integrates voting and stacking learning to construct a more robust model using multiple

AI-based classifiers. This process is illustrated in 3.2.

3.3.4 Hyperparameter Optimization

To optimize ML models in our approach, such as training individual models, we use Optuna [?]. This

work is done through 3.3.

3.3. MALWARE DETECTION VIA MUTUAL DEEP AND BOOSTING ENSEMBLE LEARNING 18

Voting & Stacking Ensemble Learning

Hyperparameter
Optimization

Original Dataset

Worst

Best 1

2

3

...

n

Feature Rank

Averaged SHAP
Values

SHAP Explainer

....

Model2

Model3

Modelm

Model1

Important Features

F1
F2

F3

...

Fn

Features List

Random Split Top Features

Training Set

CleaningExtracting Vectorizing Normalizing

Testing Set

M
et

a
Tr

ai
ni

ng
 S

et

metam+1

meta...

metam

metai+1

metai

meta...

meta1

Feature Set Optimization

DLM1

...

DLMi

GBMm

GBMi+1

...

Training Individual
Models

opt_params
Meta-
Model

Mutual Deep+Boosting Inference

Benign

Malware

Meta-
Model

M
et

a
Ve

ct
or

metam+1

meta...

metam

metai+1

metai

meta...

meta1DLM1

...

DLMi

GBMm

GBMi+1

...

(a) Architecture of MDOB-based malware detection.

1D Convolution

MaxPooling1D

Flatten

2048

1024

512

256

128

64

32 DropoutSigmoid

Adam Optimizer

Epochs

Batch Size

(b) Architecture of CNN model.

Figure 3.2: Model architectures for malware detection: (a) overall MDOB-based malware detection frame-

work; (b) CNN-based malware classification module.

Algorithm 3.3 Hyperparameter Optimization using Optuna
Input: model - AI model; Dtrain = (Xtrain, ytrain) - training set; Dtest = (Xtest, ytest) - testing set; Ntrials - number of trials; Ttimeout -

optimization timeout; params - list of hyperparameters.

1: function objective(trial)

2: model_params ← {p1, p2, p3, . . . , pn} ▷ Initialize dictionary of hyperparameters for the model

3: for p ∈ params do ▷ Use Optuna to suggest hyperparameter values for each parameter p

4: model_params[p] ← trial.suggest_⟨parameter_type⟩(“p", ⟨min_value⟩, ⟨max_value⟩)
5: end for

6: clf ← model(**model_params) ▷ Instantiate model with current parameters

7: clf.fit(Xtrain, ytrain) ▷ Train model on training data

8: preds ← clf.predict(Xtest) ▷ Make predictions on testing data

9: metric ← performance_metric(ytest, preds) ▷ Compute evaluation metric

10: return metric

11: end function

12: Initialize an empty dictionary opt_params = ∅
13: Optimize the objective function using Optuna:

14: study ← optuna.create_study(direction = “maximize”)

15: study.optimize(objective, n_trials=Ntrials, timeout=Ttimeout)

16: trial ← study.best_trial

17: opt_params ← trial.params ▷ Get optimized model parameters from the best trial

18: return opt_params

Output: opt_params - optimized hyperparameters.

3.3.5 Experiments and Evaluation

We conducted two scenarios to evaluate MDOB, as detailed below.

• Scenario S1: The focus is on using the EMBER2018 dataset to evaluate our proposed MDOB method.

• Scenario S2: We evaluated our proposed MDOB method using the BODMAS dataset.

S1 Results

Figure 3.3a shows the fine-tuning of the CNN model. Figure 3.3b compares the F1-score of different

models on the EMBER2018 dataset using 565 features.

S2 Results

The results, summarized in Table 3.5. Figure 3.3c presents the F1-score performance on the BODMAS

dataset using 165 features.

3.4. SUMMARY 19

(a)

C
B
T
X
G
B
C
N
N
G
B
M

So
ft
Vo
tin
g

St
ac
ki
ng

95
96
97
98
99

F
1
-S
co
re

(%
)

(b)

X
G
B
C
B
T
G
B
M

C
N
N

So
ft
Vo
tin
g

St
ac
ki
ng

85

90

95

100

F
1
-S
co
re

(%
)

(c)

Figure 3.3: Comparative performances of CNN and ensemble models: (a) CNN training performance on

EMBER2018 (565 features); (b) EMBER2018-based performance (565 features); (c) BODMAS-based per-

formance (165 features).
Table 3.5: Evaluation of AI models based Malware Detection (%)

Learning Method F1 Acc Prec Sens FAR FNR F1 Acc Prec Sens FAR FNR

BODMAS (165 features) EMBER 2018 (565 features)

Baseline

XGB 99.28 99.39 99.28 99.28 0.61 0.72 97.67 97.68 97.97 97.37 2.17 2.63

CBT 99.26 99.37 99.29 99.23 0.71 0.77 97.52 97.52 97.58 97.46 2.26 2.54

GBM 99.13 99.26 99.09 99.16 0.74 0.84 97.88 97.89 98.34 97.42 2.16 2.58

CNN 99.13 99.26 99.02 99.24 0.76 0.74 95.72 95.90 95.64 95.19 4.08 4.81

Mutual DLM+GBM Voting 99.32 99.42 99.34 99.30 0.66 0.70 98.02 97.89 98.38 97.65 2.03 2.35

Mutual Voting+Stacking MDOB 99.37 99.46 99.48 99.26 0.54 0.74 98.13 98.14 98.58 97.68 1.93 2.32

Table 3.6: Comparison of MDOB with SOTA Methods (%)

Method Venue Acc Prec F1 Sens

EMBER2018

MDOB (our) - 98.14 98.58 98.13 97.68

AutoML [?] Computers & Security 2024 95.80 − 95.80 −
dualFFNN k-medoids [?] Computers & Security 2023 98.02 − − −
Consensus [?] CMC 2023 96.77 − 96.77 −
DL [?] Telecom 2023 95.57 − − −
MLMD [?] CAI 2023 97.42 − − −
DNN [?] IJNIS 2022 94.09 90.14 88.66 88.85

BODMAS

MDOB (our) - 99.46 99.48 99.37 99.26

EII-MBS [?] Computers & Security 2022 99.29 98.26 94.23 98.07

MD-ADA [?] Computers & Security 2024 99.29 − 99.13 −
FCG-MFD [?] JNCA 2025 99.28 − 99.14 −

3.3.6 Comparison with SOTAs

The comparison of malware detection implementations between MDOB and SOTA is summarized in

Table 3.6.

3.4 Summary

In this chapter, we focus on improving the performance and robustness of intrusion and malware detection

systems through ensemble learning and mutual interaction among machine learning models. Building on the

enhanced datasets developed in chapter 2, this chapter addresses the limitations of individual models and

proposes a unified framework that takes advantage of the complementary strengths of both deep learning

and modern boosting algorithms.

4 Holistic Large-Scale AI-powered Intrusion

Prevention with Flow Sensing Strategy and

Parallel Ensemble Inference

4.1 Problem Statement

Traditional signature or standalone DL models are limited by latency and adaptability, often underper-

forming against evolving attacks in large-scale networks. To overcome these issues, we propose NetIPS, a

proactive intrusion prevention system that integrates flow sensing, parallel inference, and lightweight user-

space architecture.

4.2 Proposed Holistic Intrusion Detection Framework
4.2.1 Approach Direction

Our comprehensive intrusion detection approach uses deep AI-powered analysis to identify anomalous

behavior and signatures of previous intrusions, namely APELID, as illustrated in Figure 4.1 and 4.1.

4.2.2 Parallel Ensemble Inference-based Intrusion Detection

Two ideas motivated our intrusion detection method: the ensemble learning approach and parallel com-

puting. 4.2 shows our PELID algorithm.

4.2.3 Strategy for AI-powered real-time intrusion detection

For large-scale network traffic, the deep analysis certainly causes the stuck of IDPS. Therefore, we propose

an efficient strategy to sense the traffic flows. Thus, we control the periodic deep analysis sampling strategy

using 6 variables: DI_Cycle, DIC_Min, DIC_Max, and DI_Window, DIW_Min, DIW_Max.

4.2.4 Hunting Malware by Sandbox Approach

In order to improve the capability to detect malicious files transferred over the network, our proposed

APELID solution is integrated with a MalwareAnalyzer based on a sandbox approach, as illustrated in

Figure 4.1. 4.3 illustrates our strategy to analyze and identify this malware file.

4.3 Experiments and Evaluation
1. RQ1: Does combining multiple AI models of PELID, both traditional ML and DL, allow enhancing

the performance of network intrusion detection and reducing analysis time?
2. RQ2: When deploying an IDPS inline system in an intranet with large-scale network traffic, is it

fast enough to conduct a deep analysis of network flows for intrusion detection with the AI model

generated by the APELID method to ensure that network flows are handled in real time?
3. RQ3: Is it possible to implement malware file detection in the inline IDPS system combined with deep

analysis based on the AI model?

4.3.1 Experimental Results
CSE-CIC-IDS2018-based Results

The detailed results of the CSE-CIC-IDS2018 experiment are illustrated in the first part of Table 4.2

and the confusion matrix shown in Table 4.1a.

20

4.3. EXPERIMENTS AND EVALUATION 21

Notificator &
Mitigator

Drop
Reject

Alert

Real time
Traffic In

Traffic Out

DeepAnalyzer

0. Benign

score > 7
Y

Alert
Pass Other

Sensing
Y

Signature-Based Detector

Other

File Extraction
FileStore

Monitoring and
Submitting

new Files

W
eighted Voting

PELID

CBT

DNN

BME

GBM

XGB

labelID > 0
Y

N

1. Bot

2. BruteForce-Web

3. BruteForce-XSS

4. DDoS-HOIC

5. DDoS-LOIC-UDP

6. DoS-GoldenEye

7. DoS-Hulk

8. DoS-SlowHTTPTest

9. DoS-Slowloris

10. Infiltration

11. SQL-Injection

IoC Updater

MalwareAnalyzer

Database
Create Task

Check if any
VMs are
available

Task Scheduler

H
ost

Feature Engineering

IoC, Signatures

Traffic Capture Flow Featurization

Analysis VM3

Analysis VM1
Analysis VM2

Figure 4.1: Architecture of Holistic Intrusion Detection

Algorithm 4.1 Holistic intrusion Detection by flow sensing strategy and deep analysis
Input: f - Traffic In Flow, S - Signature Set, Sensing - perform AI-powered deep analysis or not, F - Files that transfer between network.

Output: f,msg, S - (Traffic Out Flow; Alert Message; Updated Signature Set)

1: action ← RuleBasedDetector(f, S)

2: IoCset ← ∅
3: if action = Drop/Reject then ▷ Drop/Reject flow due of a detected critical attack

4: Drop/Reject(f)

5: msg ←′ CriticalAttack′

6: return (none,msg, S)

7: else if action = Alert then ▷ Generate an alert

8: msg ←′ Alert_based_on_Signature′

9: else if action = Pass then ▷ Stop further inspection of the flow

10: msg ← None

11: else if Sensing = True then ▷ f does not match any rules, then AI-powered deep analysis is triggered by the sensing mechanism

12: (msgdeep, IoCdeep) ← DeepAnalyzer(f) ▷ Inspect F deeply by PELID and return a message and new IoC if an intrusion attack is detected.

13: IoCset ← IoCset ∪ IoCdeep ▷ Update IoCset with new indication of compromise IoCdeep

14: end if

15: for each t ∈ F do

16: (msgt, IoCt) ← MalwareAnalyzer(t) ▷ Analysis t deeply by Sandbox return a message and new IoCt if an malware file is detected.

17: IoCset ← IoCset ∪ IoCt ▷ Update IoCset with new indication of compromise IoCt

18: end for

19: S ← S ∪ IoCset ▷ Update S with new indication of compromise IoCset

20: return (f,msg, S)

NSL-KDD-based Results

The second part of Table 4.2 shows the experimental results by using NSL-KDD dataset, and Table 4.1b

presents the PELID model’s confusion matrix.

Malware Hunting Results

This scenario includes two completely separate networks: DMZ Network (including Web server (HTTP

and FTP), Mail Server (SNMP), and Attacks-Network), shown as Table 4.3a. We compared the experimental

results with Virus Total (VT), shown in Table 4.3b.

4.3.2 Evaluation
Efficacy of PELID in Intrusion Detection

Compared with individual AI models, as illustrated in Table 4.2. These results privilege us to respond

to RQ1: combining multiple AI models of PELID allow for improved network intrusion detection.

Efficacy of PELID in Time Consumption

Figure 4.2b shows that the average time the PELID prediction, RQ2 RQ3 has been resolved by all

these experimental results show more in Table 4.2.

4.3.3 Comparison with SOTAs

?? demonstrates that APELID outperforms SOTA and achieves the greatest scores across all evaluation

metrics to answering RQ1.

4.4. NETIPS: DEPLOYMENT OF NETWORK INTRUSION DETECTION AND PREVENTION 22

Algorithm 4.2 PELID: Parallel Ensemble Learning-based Intrusion Detection
Model: XGB, GBM, CBT , BME, DNN - XGB, GBM, CBT, BME and DNN trained model, and their ensemble weight ωi where

∑5
i=1 ωi = 1.

Input: f - traffic flow.

Output: (msg,R) - (alert messages; new generated rules)

1: R ← ∅
2: F ← Featurize(f) ▷ Extract features of traffic flow f.

3: Fin ← Normalize(F) ▷ Perform the feature engineering: remove unused features and normalize the rest.

4: Cats ← [DstPort, Protocol] ▷ Categorical variables

5: Conts ← Fin \ Cats ▷ Continuous variables

6: Perform in parallel five processes P1, P2, P3, P4, P5:

7: P1: pXGB ← XGB.predict(Cats, Conts) ▷ Perform the prediction using XGB.

8: P2: pGBM ← GBM.predict(Cats, Conts) ▷ Perform the prediction using GBM.

9: P3: pCBT ← CBT.predict(Cats, Conts) ▷ Perform the prediction using CBT .

10: P4: pBME ← BME.predict(Cats, Conts) ▷ Perform the prediction using BME.

11: P5: pDNN ← DNN.predict(Cats, Conts) ▷ Perform the prediction using DNN.

12: Wait P1, P2, P3, P4, P5 finished.

13: scores ← (pXGB ∗ ω1 + pGBM ∗ ω2 + pCBT ∗ ω3 + pBME ∗ ω4 + pDNN ∗ ω5)

14: FC ← scores.argmax(axis = 1) ▷ Get the flow predicted label.

15: if FC! = 0 then ▷ Classified as network attacks

16: msg ← Alert(FC, f) ▷ Generate an alert by using metadata from the flow f; set alert category being as predicted label.

17: R ← RuleGenerator(FC, f) ▷ Generate a new signature based on its indicator of compromise.

18: end if

19: return msg;R

Algorithm 4.3 Malware Detection
Input: F - New files transferred in network and accumulated in FileStore folder.

Output: (msg,R) - (Alert Message, New Rules generated based malware detected files).

1: Ready ← Wait_Sandbox_Ready ▷ Blocking-function until Sandbox is ready.

2: IngestFiles(F) ▷ Send F in the FileStore folder to Sandbox

3: score = HybridAnalyzer(F) ▷ Determine the overall score of both static and dynamic analysis.

4: if score > 7 then ▷ Critical suspicious file

5: R ← RuleGenerator(F) ▷ Update the rule to block connection.

6: msg ← ‘Detected_Malware_Files′

7: return msg,R

8: end if

4.4 NetIPS: Deployment of Network Intrusion Detection and Pre-

vention
4.4.1 Deployment Model

The architecture is illustrated in Figure 4.2c and divided into three layers. The lower layer is the

network hardware, including SmartNIC (network accelerator) and traditional network interfaces, used to

analyze traffic and manage the NetIPS.

4.4.2 Hypermatching for Signature-based Detector

In the Rule-based Detector, the Hyperscan technique is utilized to enhance the efficacy of the ruleset

matching procedure. It matches more effectively than other methods (such as Aho-Corasick, Boyer-Moore).

4.4.3 Accelerating AI-powered Intrusion Detection in User Space

In NetIPS, packet handling is optimized by replacing traditional NICs with a Napatech SmartNIC and

leveraging the DPDK library to bypass kernel overhead, reducing context switching and latency.

4.5 Summary

Chapter 4 addresses the critical challenge of deploying AI-powered intrusion detection and prevention

systems in large-scale, real-world environments, where requirements for real-time performance, scalability,

and operational reliability are paramount. Building upon the data enhancements and ensemble modeling in-

novations developed in previous chapters, this chapter introduces and evaluates a comprehensive architecture

for practical, high-throughput network defense.

4.5. SUMMARY 23

Benign
6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Bot
0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-Web
0
0%

0
0%

78
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-XSS
0
0%

0
0%

0
0%

29
91%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-HOIC
0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-LOIC-UDP
0
0%

0
0%

0
0%

0
0%

0
0%

336
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-GoldenEye
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

5999
100%

0
0%

0
0%

1
0%

0
0%

0
0%

DoS-Hulk
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

DoS-SlowHTTPTest
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

4082
100%

0
0%

0
0%

0
0%

DoS-Slowloris
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

2093
100%

0
0%

0
0%

Infiltration
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

SQL-Injection
0
0%

0
0%

1
1%

3
9%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

13
100%

T
ru
e
L
a
b
el

Predicted Label

(a)

DoS
6000
100%

0
0%

0
0%

0
0%

0
0%

Probe
0
0%

2484
99%

0
0%

0
0%

16
0%

R2L
0
0%

0
0%

185
98%

0
0%

6
0%

U2R
0
0%

0
0%

0
0%

4
100%

8
0%

Benign
0
0%

18
1%

4
2%

0
0%

5978
99%

T
ru
e
L
a
b
el

Predicted Label

(b)

Table 4.1: Confusion matrices of PELID model: (a) CSE-CIC-IDS2018 and (b) NSL-KDD.

Table 4.2: Evaluation of AI models based PELID (%)

Metric
CSE-CIC-IDS2018 NSL-KDD

XGB CBT GBM BME DNN PELID XGB CBT GBM BME DNN PELID

F1 99.77 99.92 99.95 99.77 97.75 99.99 99.48 99.21 99.48 99.48 98.00 99.63

Acc 99.76 99.92 99.96 99.98 97.54 99.99 99.49 99.22 99.56 99.43 98.07 99.65

Prec 99.83 99.93 99.96 99.98 98.20 99.99 99.49 99.21 99.49 99.41 98.03 99.65

Rec 99.76 99.92 99.96 99.98 97.54 99.99 99.49 99.22 99.49 99.43 98.07 99.65

FPR 0 0 0.03 0 0.13 0 0.67 1.27 0.63 0.77 1.22 0.37

FNR 0 0.01 0 0 1.37 0 0.37 0.39 0.30 0.32 2.26 0.34

AUC 100 100 99.99 99.99 98.69 100 99.99 99.98 99.99 99.89 99.85 99.99

Sanbo

DMZ

Mail

FTP

Attacker

Files

Switch

IDPS

FW

Database

Web Server

Sandbox

(a)

DS1

DS2

1,422.7

284.35

950.48

251.81

445.53

174.61
Sequence Parallel Baseline

(b)

(c)

Figure 4.2: (a) malware hunting scenario, (b) parallel vs sequential processing, and (c) APELID-based NetIPS

architecture.

(a)

N Malware Type Hash VT APELID

1 QuasarRAT .exe 832ab3a898d188426d3541e1533b55f9 56/68 Yes

2 Loki .xlsx 5b6aec60c3be4724f7980a659206531a 29/58 Yes

3 STRRAT .jar 2199150e7d79d0e831cda314c7ce6f56 28/62 Yes

4 AsynRAT .doc da6419e4d4e4528990898bcfdaa85e01 32/60 Yes

5 SnakeKeylogger .exe 715b0f6390ba4387a4155c1d59a3669c 49/69 Yes

6 AgentTesla .exe 5c590fcb32aedec16532aa857eec28b5 40/66 Yes

7 OskiStealer .xlsx 6a9203346218dded19d0a8a1dee24023 20/59 Yes

8 NanoCore .exe 4bae18ac4a73ff38f7ed718365e6c2b2 41/67 Yes

9 DanaBot .exe 5f4731a4ef7d1484893213caaf6a6685 42/69 Yes

10 DCRAT .exe ea800644b9dfd027807447fdd98241aa 50/68 Yes

11 YellowCockatoo .dll df7b2ece343c52df774d72e12ea09009 51/69 Yes

12 RemoteManipulator .exe 4c5649e9b9a2d9997ac2600a804e0aeb 41/68 Yes

13 Pony .exe ab468a5b5cd9470c0895097efa2a687f 63/71 Yes

14 Stealc .exe cea30f806e644cebe48399eefa345e51 47/71 Yes

15 njRat .exe b17414d6949c2e013de14fdc268cfc89 65/71 Yes

16 RedLineStealer .exe 8a61e10948c23a9a5c353d28b8738490 35/71 Yes

17 Guildma .zip 8a61e10948c23a9a5c353d28b8738490 35/71 Yes

18 Gozi .js 1df2e7a13459223b2cc55b93744add77 24/71 Yes

19 DarkTortilla .exe 1c354a83f81063dc75612a9a7bd51225 54/71 Yes

20 VectorStealer .xlsx 5b47098a17ecd534de15df03b12beacb 40/71 Yes

(b)

Method Acc Prec F1 Rec

CSE-CIC-IDS2018

APELID (ours) 99.99 99.99 99.99 99.99

MMM-RF 99.98 – – –

GAN+RF 99.83 98.68 95.04 92.76

KNN-MQBHOA 99.78 99.56 99.65 99.87

HDLNIDS 98.90 98.63 99.03 99.14

CNN 98.17 95.00 94.00 95.00

AUE 97.90 98.00 98.00 98.00

miniVGGNet 96.99 97.46 97.04 96.97

NSL-KDD

APELID (ours) 99.65 99.65 99.63 99.65

KNN-MQBHOA 99.00 99.00 97.00 98.00

FFO-PNN 98.99 96.97 96.97 96.97

DLNID 90.73 86.38 89.65 93.17

GMM-WGAN-IDS 86.59 88.55 86.88 86.59

Adaptive-Ensemble 85.20 86.50 86.50 85.20

CAFE-CNN 83.34 85.35 82.60 83.44

Table 4.3: (a) Malware hunting results detected by APELID in the wild; (b) Comparison of APELID per-

formance with state-of-the-art intrusion detection methods on CSE-CIC-IDS2018 and NSL-KDD datasets.

https://www.virustotal.com/gui/file/7d6cfc5cfb6243152ee28b41a00650c3c95cc3615a5407c6ec094632926b99e2
https://www.virustotal.com/gui/file/12e3736cdbc5f8fdfd9d4b02d19dafb58f3c9990964ee589eb4f18aaf3f75ef2
https://www.virustotal.com/gui/file/3617eb69a337e324ddc96340fbe2045da6c7635f83ff514dde6eeaba59bbea87
https://www.virustotal.com/gui/file/ad0972d2a239b3ba4cbe61079c530624e16e8e57159ce21796b3e711888c997d
https://www.virustotal.com/gui/file/e32e862a630ef89e4be2a6730c7c3ab966bf863942a2435839e6b2cd08714b23
https://www.virustotal.com/gui/file/61e5a9d4e73fd837d919eedcdf4afcca159875f4ec7b0a1a57c873c54c442c9c
https://www.virustotal.com/gui/file/5d34a073e711eefc35990e5f94d3eb9ff26a28e097707ed15ef9c6b421cb0aee
https://www.virustotal.com/gui/file/e73b03a58aaa3e066512e451603c4ffc2404ad373d83f70b12ddb1c5bbef620a
https://www.virustotal.com/gui/file/8a70f9b5ae2d2283111a69fc8db8b66656dbb82f08b089649033064ed59c6d8e
https://www.virustotal.com/gui/file/0b5a4d65bd3424391e5f9bc5b6247635b8097005edb07f35eee3aef1d73e1b64
https://www.virustotal.com/gui/file/a57eb7bfeac633b9312c6490499f40e654cb1b8d68388da4ce63314cd6abbbcc
https://www.virustotal.com/gui/file/1fb6087e4c6654baf677b60bf6f12b8a19e232e5e74713e6beb37678c674bf1c
https://www.virustotal.com/gui/file/d9e0be40db0545d6150990074f3c3409093c458e0416ed81f6d01bd5151c8501
https://www.virustotal.com/gui/file/cd44f8371731aa66124f2e11abcbe7cba476625920f1a9e5123e02e5d2aad62f
https://www.virustotal.com/gui/file/99219aa34910a8c28a6bfc96a6a58247fb1aa6c0cd0abd4af5445aa0ba359525
https://www.virustotal.com/gui/file/90961c5d548207db7c1695ffe82ef9cad529e6f1d987de9bfc67da9a045f67ff
https://www.virustotal.com/gui/file/90961c5d548207db7c1695ffe82ef9cad529e6f1d987de9bfc67da9a045f67ff
https://www.virustotal.com/gui/file/b4bbd543d7163e791713e8a767984873c374e868d3da7831e47a0d3fee8a290a
https://www.virustotal.com/gui/file/d89ff8e9bac2d21d4ec86c47f05e1a569ce9578e2309b96aa09c4a6ef02b8e02
https://www.virustotal.com/gui/file/59df7ebde2f9db5aae9ac2d7db37e0d6e278ddb1cfa7512edd61f233df0ff33a

Conclusions and Future Work

Contribution Highlights
• Propose a machine learning pipeline with data augmentation and feature optimization (WGAN-

powered augmentation + SHAP-based feature optimization) to balance and enhance the quality of

training datasets, thereby improving the detection capability for minority-class attacks.

• Introduce a deep and boosting mutual inference framework that strengthens the accuracy and re-

silience of intrusion and malware detection systems.

• Propose a solution to address data bottlenecks in large-scale network intrusion prevention through a

time-interval and frequency-based flow sensing strategy, combined with parallelized inference of deep

and boosting mutual inference models.

• Integrate the proposed methods into the NetIPS real-time intrusion detection and prevention system,

which leverages AI-based models at the user level to process high-volume traffic (on a large scale),

making it suitable for enterprise and ISP networks.

Dissertation Limitations
• All tests were performed using fixed datasets that were prepared in advance, which means that we

cannot see how well the model would adapt to real-life situations or when the data change over time.

• The NetIPS component has not yet been extensively validated in various real-world scenarios. In

particular, comprehensive evaluations of hardware performance and deployment feasibility have not

been conducted in large-scale production networks.

• The current experimental design does not include ablation studies to quantify the contribution of

individual components or techniques to the overall performance. Such evaluations could provide more

details on the effectiveness of the system and guide future optimizations.

• The models were trained primarily on structured network or PE data. More complex attack vectors,

such as encrypted traffic, multistage malware, etc.., were not within the scope of this study.

Future Research Directions
• Online and continuous learning: Integrating online learning methods and incremental retraining into

detection pipelines could allow models to adapt to evolving threats and handle dynamic environments

more effectively.

• Future systems could use different types of data, such as how hosts behave, process trees, user activ-

ities, and patterns in encrypted traffic, all within a single detection framework.

• Automated response and defense integration: Improving detection systems with immediate actions,

like automatically blocking threats, updating rules, or prioritizing alerts, can connect simple detection

with active defense.

• Making it easier to understand decisions: Creating simple and user-friendly tools that explain how

AI systems work, particularly for endpoint systems, can build trust and help security analysts work

better with AI tools.

24

Personal Publications

Journals

VVH-J1 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, AI-powered intrusion detection in large-scale

traffic networks based on flow sensing strategy and parallel deep analysis, Journal of Network and

Computer Applications 220 (2023) 103735. DOI: 10.1016/j.jnca.2023.103735; (IF 8.0, SCI-E, top 2%

Q1-Scopus)

VVH-J2 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, APEPID: Enhancing real-time intrusion de-

tection with augmented WGAN and parallel ensemble learning, Computers and Security 136 (2024)

103567. DOI: 10.1016/j.cose.2023.103567; (IF 5.4, SCI-E, top 7% Q1-Scopus)

VVH-J3 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, MDOB: Enhancing Resilient and Explain-

able AI-Powered Malware Detection Using Feature Set Optimization and Mutual Deep+Boosting

Ensemble Inference. Journal of Information Security and Applications 2025 93 (2025) 104175. DOI:

10.1016/j.jisa.2025.104175; (IF 3.7, SCI-E, top 8% Q1-Scopus)

Conferences

VVH-C1 Hoang V. Vo, Hoa N. Nguyen, Tu N. Nguyen, Hanh P. Du, SDAID: Towards a Hybrid Signature

and Deep Analysis-based Intrusion Detection Method, in: GLOBECOM 2022 - 2022 IEEE Global

Communications Conference, 2022, pp. 2615–2620. DOI: 10.1109/GLOBECOM48 099.2022.10001582.

(WoS, Scopus)

VVH-C2 Hoang V. Vo, Duong H. Nguyen, Tuyen T. Nguyen, Hoa N. Nguyen, Duan V. Nguyen, Leveraging

AI-Driven Realtime Intrusion Detection by Using WGAN and XGBoost, in: Proceedings of the 11th

International Symposium on Information and Communication Technology, Association for Computing

Machinery, New York, NY, USA, 2022, p. 208–215. DOI: 10.1145/3568562.3568660. (WoS, Scopus)

VVH-C3 Hoang V. Vo, Phong H. Nguyen, Hau T. Nguyen, Duy B. Vu, Hoa N. Nguyen, Enhancing AI-

Powered Malware Detection by Parallel Ensemble Learning, in: 2023 RIVF International Conference on

Computing and Communication Technologies (RIVF), 2023, pp. 503–508. DOI: 10.1109/RIVF60135.2023.10471855.

(WoS)

VVH-C4 Hoang V. Vo, Hanh P. Du and Hoa N. Nguyen, AWDLID: Augmented WGAN and Deep Learning

for Improved Intrusion Detection, 2024 1st International Conference On Cryptography And Infor-

mation Security (VCRIS), Hanoi, Vietnam, 2024, pp. 1-6, DOI: 10.1109/VCRIS63677.2024.10813392.

(WoS)

25

	Introduction
	Motivation
	Research Challenges
	Research Objectives
	Research Scope
	Research Methodologies
	Research Contributions
	Thesis Structure

	Preliminaries and Literature Reviews
	Fundamental Concepts
	Intrusion Detection System
	Common Types of Network Attacks
	Machine Learning in Cybersecurity
	Class Imbalance in Cybersecurity Dataset
	Ensemble Learning in Intrusion Detection

	Approaches to Threat Detection
	AI-powered Intrusion Detection
	AI-powered Malware Detection
	Handling Imbalanced Datasets

	Related Work
	Deep and Boosting Learning for Intrusion Detection
	Deep and Boosting Learning for Malware Detection
	Data Augmentation

	Dataset Collection
	Evaluation Metrics
	Research Gaps and Approach Direction
	Summary

	Enhancing AI-powered Intrusion Detection with Data Augmentation and Feature Optimization
	Problem Statement
	Approach Direction
	Training Dataset Augmentation
	Difficulty-Aware-based Data Augmentation
	AWGAN-based Data Augmentation

	Feature set Optimization
	Feature Extraction and Cleaning
	Feature Vectorizing
	Feature Normalization
	SHAP-based Feature Set Optimization

	Experiments and Evaluation
	Dataset Preparation
	Results and Evaluation

	Summary

	Enhancing AI-powered Intrusion Detection with Mutual Deep and Boosting Inference
	Problem Statement
	Network Intrusion Detection via AI-Powered Deep Analysis
	Direction Approach
	Network Traffic Flow Modeling
	DNN-based Intrusion Detection Algorithm
	Boosting-based Intrusion Detection Algorithm
	Hyperparameter Optimization
	Experiments and Evaluation
	Comparison with SOTAs

	Malware Detection via Mutual Deep and Boosting Ensemble Learning
	Approach Direction
	Mutual Deep and Boosting Learning
	Combination of Voting and Stacking Ensemble Learning
	Hyperparameter Optimization
	Experiments and Evaluation
	Comparison with SOTAs

	Summary

	Holistic Large-Scale AI-powered Intrusion Prevention with Flow Sensing Strategy and Parallel Ensemble Inference
	Problem Statement
	Proposed Holistic Intrusion Detection Framework
	Approach Direction
	Parallel Ensemble Inference-based Intrusion Detection
	Strategy for AI-powered real-time intrusion detection
	Hunting Malware by Sandbox Approach

	Experiments and Evaluation
	Experimental Results
	Evaluation
	Comparison with SOTAs

	NetIPS: Deployment of Network Intrusion Detection and Prevention
	Deployment Model
	Hypermatching for Signature-based Detector
	Accelerating AI-powered Intrusion Detection in User Space

	Summary

	Conclusions and Future Work
	Contribution Highlights
	Dissertation Limitations
	Future Research Directions

	Personal Publications
	Journals
	Conferences

	BIBLIOGRAPHY

