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Introduction
Motivation

Cyberattacks are becoming more sophisticated, exposing the limitations of traditional signature- and
rule-based systems, which struggle with zero-day exploits, polymorphic malware, and high false alarms.
While ML and DL provide powerful alternatives, they face challenges such as noisy and imbalanced data,
feature redundancy, and poor interpretability. Moreover, many models fail to meet real-time and scalability
requirements in practice. To address these gaps, this dissertation proposes a roadmap unifying data balancing,
feature refinement, model optimization, and multimodel inference to build accurate, resilient, explainable,

and deployable Al-based intrusion and malware detection systems.

Research Challenges

This dissertation focuses on the following major challenges:

1. Challenge 1: Cybersecurity datasets are heavily imbalanced, with the vast majority of samples belong-
ing to benign traffic or a few common attack types, while rare but dangerous threats (e.g., infiltration,
exfiltration, and zero-day attacks) are underrepresented. This leads to biased model learning and poor

detection of minority attacks.

2. Challenge 2: Achieving high accuracy and low false positive rates in Al-powered intrusion detec-
tion systems, while maintaining overall system performance and interpretability, remains a persistent

challenge.

3. Challenge 3: For Al-powered intrusion detection systems to be operationally viable, they must process
large volumes of traffic at wire speed with minimal delay. However, the computational complexity of

machine learning models often hinders real-time deployment.

Research Objectives

e Objective 1: An overview of cyberattacks and the techniques used by hackers to carry out such attacks.
Research intrusion and malware detection techniques and analyze the advantages and disadvantages of

each method. Evaluate the results of the latest research related to the problem of intrusion detection.

e Objective 2: We propose a augmentation dataset method that aims to improve the quality of minority
attack samples, select the most representative samples from the majority classes; minimize training

noise by identifying important features within the dataset.

e Objective 3: Traditional intrusion detection methods often struggle with generalization and robustness
against novel or adversarial attacks. This objective aims to integrate neural networks with boost

models through soft voting and stacking strategies.

e Objective 4: Al-based detection systems often suffer from inference latency and limited scalability.
This objective aims to design a lightweight, high-throughput detection architecture with support for

flow-based sensing and parallel ensemble inference.
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Research Scope

To achieve the objectives of this dissertation, we focus on the following key areas:

1.

Research data structures and class imbalance in intrusion detection datasets and study machine

learning and deep learning models for their effectiveness.

Research focuses on building lightweight high-throughput detection architectures suitable for real-time

deployment in large-scale networks.

Research Methodologies

This dissertation employs a systematic and layered research methodology, as outlined below:

e Theoretical Methodology: We conduct a comprehensive survey, synthesis, and evaluation of pre-

vious research relevant to intrusion detection and malware classification.

e Experimental Methodology: The proposed frameworks and algorithms are empirically validated

through extensive experiments on multiple benchmark datasets, including public and custom-prepared

corpora.

Research Contributions

The key contributions are as follows:

1.

We propose methods for augmentation dataset and feature set optimization. The approach integrates
adversarial sample generation to enrich the minority class and employs filtering techniques to retain

only semantically meaningful samples from the majority class.

We propose an integrated ensemble architecture that combines neural networks with boosting classi-
fiers using both soft voting and stacking strategies. This hybrid framework leverages the complemen-
tary strengths of deep learning and tree-based models to enhance detection accuracy, robustness, and

interpretability.

We design and implement NetIPS, a lightweight and real-time intrusion detection and prevention

architecture optimized for large-scale network environments.

Thesis Structure

This dissertation is structured into four chapters:

e Chapter 1 This chapter presents essential background knowledge in intrusion and malware detection,

with an emphasis on machine learning, deep learning, and ensemble techniques.

Chapter 2 proposes augmentation dataset methods for machine learning, focusing on addressing the

imbalance between minority and majority classes in the dataset.

Chapter 3 focuses on improving machine learning models to enhance performance. The chapter pro-
poses combining and mutually reinforcing different types of models to increase intrusion detection

effectiveness and system robustness.

Chapter 4 proposes a practical deployment approach for intrusion detection systems in large-scale
networks. A comprehensive process for intrusion detection is introduced that integrates both signature-

based and behavior-based analysis, along with execution and sampling strategies.



1 Preliminaries and Literature Reviews

1.1 Fundamental Concepts

1.1.1 Intrusion Detection System

Intrusion Detection Systems (IDS) are critical for monitoring network and host activities, with NIDS
analyzing traffic flows and HIDS focusing on endpoint behavior. Detection approaches range from signature-
based methods, effective only for known threats, to anomaly-based systems that detect novel intrusions but
suffer high false positives. Recent ML/DL techniques improve adaptability and malware detection via static

and dynamic analysis, yet challenges remain in data imbalance, obfuscation, and real-time deployment.

1.1.2 Common Types of Network Attacks

The summary of common network attack types show as

1.1.3 Machine Learning in Cybersecurity

Machine learning (ML) has become a key enabler for modern cybersecurity by learning complex pat-
terns and adapting to evolving threats, surpassing the limitations of traditional rule-based detection. ML
techniques are used across tasks such as intrusion detection, malware classification, phishing detection, and
behavioral analysis. Despite their strengths, ML/DL models face challenges: data imbalance, limited gener-

alization, lack of interpretability, and real-time performance constraints.

1.1.4 Class Imbalance in Cybersecurity Dataset

Class imbalance is a major challenge in cybersecurity datasets, where benign samples vastly outnum-
ber malicious ones, and rare but critical attack types are often underrepresented. This skews ML model

performance, leading to poor recall on minority attack classes and high false negative rates.

1.1.5 Ensemble Learning in Intrusion Detection

Ensemble learning combines multiple base models to achieve better predictive performance, making it
highly effective for cybersecurity where attack patterns are diverse and evolving. By integrating models
through techniques like bagging, boosting, voting, and stacking, ensembles improve accuracy, generalization,

and resilience to adversarial evasion.

1.2 Approaches to Threat Detection

1.2.1 Al-powered Intrusion Detection

Al-based intrusion detection leverages machine learning (ML) and deep learning (DL) models to classify
network traffic flows as benign or malicious. Gradient boosting methods such as XGBoost and GBM have

proven effective in this domain by sequentially minimizing prediction errors and modeling complex attack



1.2. APPROACHES TO THREAT DETECTION

Table 1.1: Summary of Common Network Attack Types

Attack Type

Technique

Impact

Detection

Denial-of-Service

Traffic floods, amplification

Service unavailability

Rate limiting, filter-

(DoS/DDoS) ing

Scanning & Enumer- | Port/vulnerability scans Reconnaissance IDS, anomaly detec-
ation tion

Spoofing IP/ARP/DNS falsification Evasion, redirection Authentication,

ARP/DNS security

Man-in-the-Middle
(MitM)

Interception, SSL stripping

Data theft, manipu-

lation

Encryption, certifi-

cate pinning

Sniffing/ Eavesdrop-
ping

Passive/active traffic cap-

ture

Credential leakage

TLS, VPN

Replay/Session  Hi-

Packet replay, session ID

Unauthorized access

Token/session man-

jacking theft agement, TLS
Malware  Propaga- | Worms, trojans, ran- | Compromise, data | Antivirus, sandbox-
tion somware loss ing

Phishing/Social En-

Deceptive messages, psycho-

Credential theft, ini-

User training, email

gineering logical tricks tial access filtering
SQLi/XSS/CSRF Web input manipulation Data theft, deface- | Input validation,
ment WAF
APT Multi-stage, stealthy infil- | Espionage, long-term | Behavior analytics,
tration theft EDR

Supply Chain

Third-party compromise

Widespread breach

Vendor management,

code review

Insider Threat

Privileged misuse, data ex-

filtration

Confidentiality

breach

Monitoring, least

privilege, DLP

patterns. Deep neural networks (DNNs) excel at capturing nonlinear relationships in traffic data through
multi-layer representations. Each ML/DL model offers unique strengths; combining them through ensemble

learning improves detection accuracy and resilience against adversarial attacks.

1.2.2 Al-powered Malware Detection

For Al-powered malware detection, define D as the dataset composed of pairs (v,y), where v is the
representation of a feature vector of a PE file and y € {0,1} is the associated label (e.g., 0 for benign, 1
for malware), respectively. Thus, D = (v1,y1), (v2,¥2), ..., (Var, yar) with M representing the total number
of samples. The problem is to train a generalized AI model f : R® = 0,1 on the dataset D such that,
for any new PE file, its feature vector v is mapped to a predicted label § = f(v). The goal is to maximize
the accuracy of f while generalizing well beyond the training dataset, thus enabling the reliable detection of

malware in unseen PE files.



1.3. RELATED WORK

1.2.3 Handling Imbalanced Datasets

Most datasets suffer from severe class imbalance, with benign traffic dominating and attack flows un-
derrepresented. This imbalance degrades both model training and prediction accuracy. To address this, data

balancing techniques are employed such as undersampling the majority class and oversampling the minority

class.

1.3 Related Work

1.3.1 Deep and Boosting Learning for Intrusion Detection

A summary of these methods and their performance is provided in

Table 1.2: Summary of Related Works based Intrusion Detection

Method Venue Approach Dataset Acc(%)
RF+ miniVG- IEEE Access 2020 Combination of K-Means and ENN to balance NSL-KDD, 82.84,
GNet [? ] dataset then RF+ miniVGGNet to detect intru- CIC-IDS2018  96.99
sions.
WGAN+ Computer Science Applying WGAN-GP for data generation on mi- NSL-KDD, 99.00,
LightGBM [?] 2021 nority class samples and using Light GBM for the CIC-IDS2018 96.00
classification.
MMM-RF [? ] Computer & Secu- Use CFS to analyze network traffic, T-SNE to  CIC-IDS2018 99.98
rity 2022 minimize data dimension, and SMOTE to imbal-
ance the CSE-CIC-IDS2018 dataset.
CNN, DBNs, Computers and Transforms the traffic flow features into waves CIC-IDS2017,  99.21,
LSTM [? ] Electrical ~ Engi- and utilizes advanced audio/speech recognition NSL-KDD 84.82
neering 2022 deep-learning-based techniques to detect intrud-
ers.
CNN+LSTM Digital Communi- Used SMOTE to balance abnormal traffic, CNN UNSW.NB15,  99.21,
[?] cations and Net- to extract deep features, then CNN-LSTM to de- CIC-IDS2017,  99.32,
works 2023 tect intrusions. NSL-KDD 98.45
FFO+PNN [?] Alexandria Engi- Used the FFO technique to extract features and NSL-KDD 98.99
neering  Journal PNN to classify categories.
2023
CNN+EQL [?] Computer Com- Used CNN and the Attention mechanism mingle UNSW.NB15,  89.39,
munications 2023  to form a CA Block focusing on local spatiotem- NSL-KDD, 99.77,
poral feature extraction and EQL v2 to increase CIC-IDS2017,  99.88,
the minority class weight and balance the learn- CIC- 99.58
ing attention on minority classes. DDo0S2019
PIGNUS [? ] Computer & Secu-  Use Auto Encoders to select optimal features and NSL-KDD 99.02

rity 2023

Cascade Forward Back Propagation Neural Net-

work for classification and attack detection.
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1.3.2 Deep and Boosting Learning for Malware Detection
A summary of these methods and their performance is provided in
Table 1.3: Summary of Related Works based Malware Detection

Method Venue Approach Dataset Ace(%)

CNN [?] Distributed Computing The method in this study converts binary files into EMBER 94.00
and Artificial Intelli- grayscale images to detect malware. The model 2018
gence 2021 also integrates an attention mechanism to identify

suspicious parts within the file.

DNN [?] Procedia Computer Sci- This method builds an improved offensive genera- EMBER 97.42
ence 2022 tive model based on GANSs to strengthen the cur- 2018

rent DNN-based system.

CNN [?] International Journal of This method employs feature extraction, data EMBER 97.53,
Computer Network and standardization, and data cleaning techniques to 2017 & 2018  94.09
Information Security address imbalances and impurities within the
2022 dataset.

EII-MBS  Computers & Security This technique finds patterns in how instructions BODMAS 99.29

(7] 2022 relate to each other and turns this information into

vector representations to classify malware families.

XGB- Computer, Material & The technique in this study utilizes a model com- EMBER 96.77

CATB- Continua 2023 bining supervised and unsupervised learning to 2018

EXT [? ] improve malware detection. Specifically, k-means

clusters the data before a set of ML algorithms
classifies it.
MD-ADA Computers & Security This approach combines CNN-based image embed- BODMAS 99.29
7] 2024 dings and adversarial domain adaptation (using
GANS) to classify malware.
FCG- Journal of Network and This method wuses function call graphs and BODMAS 99.28
MFD [?] Computer Applications node2vec along with ideas from NLP to help clas-
2025 sify malware families.

1.3.3 Data Augmentation

To resolve imbalanced dataset, several techniques are employed such as undersampling the majority class

and oversampling the minority class, etc.

1.4 Dataset Collection

This dissertation employs several widely used public datasets: The CSE-CIC-IDS2018; NSL-KDD; EM-
BER2017 and EMBER2018 and BODMAS datasets.
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1.5 Evaluation Metrics

We use standard metrics computed from the confusion matrix, such as: Acc; Prec; Rec; etc.

1.6 Research Gaps and Approach Direction

e Research Gap 1: Most real-world intrusion detection datasets suffer from severe class imbalance, where

minority attack classes are underrepresented and difficult to learn.

Approach Direction : To address these limitations, we propose augmentation dataset meth-

ods that enhances both the quantity and quality of training dataset, optimizing feature space.

e Research Gap 2: Although recent studies have proposed various approaches to optimize machine
learning models for intrusion detection, model optimization remains a persistent challenge in machine

learning applications.

Approach Direction : We design a mutual deep-+boosting ensemble inference pipeline that
leverages the complementary strengths of diverse models to enhance overall performance and reduce

vulnerability to model poisoning.

e Research Gap 3: Despite recent advances, most IDS models remain unsuitable for high-throughput
environments due to computational bottlenecks, static detection logic, and lack of adaptive flow
control. Traditional detection frameworks are unable to meet real-time latency constraints or scale to

modern enterprise or ISP-level networks.

Approach Direction (chapter J|): We propose a scalable and low-latency intrusion prevention system
called NetIPS, built upon parallelized deep and boosting models integrated with flow-sensing opti-

mization and sandbox analysis.

1.7 Summary

In summary, this chapter has identified the key research challenges and objectives in intrusion and
malware detection and outlined the main scientific contributions and research roadmap of the dissertation.
The mapping between these contributions and the corresponding technical chapters has also been presented,

providing a clear structure for the remainder of this work.



2 Enhancing Al-powered Intrusion Detection
with Data Augmentation and Feature Op-
timization

2.1 Problem Statement

We introduces two complementary solutions: (i) an adaptive data augmentation pipeline that compresses
majority classes and generates realistic minority samples to improve balance and diversity, and (ii) a SHAP-
based Optimized Feature Set (OFS) method that prunes irrelevant features, enhances interpretability, and

reduces computational overhead.
2.2 Approach Direction

To address the two major challenges of class imbalance and feature redundancy in intrusion detection
datasets, we introduce augmentation dataset methods aimed at enhancing the learning capacity of Al models
in practical cybersecurity contexts. The proposed approach is designed to simultaneously address the problem
of insufficient dataset in minority classes, select high-quality samples from majority classes, and identify
valuable features in datasets with large numbers of features, issues that are commonly encountered in real-

world datasets.

2.3 Training Dataset Augmentation
2.3.1 Difficulty-Aware-based Data Augmentation

We propose a method based on the concept of the DSSTE algorithm proposed by [? ] to augment the
training dataset. Our algorithm is named AugDS and is shown in

2.3.2 AWGAN-based Data Augmentation

To solve the issue of the unbalanced dataset in IDS, our augmented WGAN method, AWGAN, generates
realistic samples for minority classes using WGAN, the AWGAN is depicted in and is described

formally in

2.4 Feature set Optimization

2.4.1 Feature Extraction and Cleaning

Feature extraction and cleaning are essential to reduce computational cost and avoid noisy or duplicate
data that cause overfitting. Our approach removes null or duplicate records, ensuring only unique and relevant

entries remain in the dataset.
2.4.2 Feature Vectorizing
Raw data, often in JSON format, must be transformed into numerical vectors for AI model training. To

achieve this, we apply feature hashing, which maps tokens into fixed-length vectors while preserving data

characteristics [? |. Using kernel and sign hash functions, features are vectorized, normalized, and stored
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Algorithm 2.1 AugDS: Build the Augmented Dataset

Input: F - Raw Dataset, represented by a list of feature vectors; K - scaling factor

Output: T - Augmented Dataset;

1: L« ComputeLabels(F) > Get all labels of dataset F
2: F « Normalize(F) > normalizing all feature vectors
3: ES = EditedNearestNeighbours(RT, |L|) > determining the easy sets ES by finding L nearest neighbours samples
4: DS = RT \ ES P> difficult set DS is the rest of RT
5: Majors, Minors « ComputeMajMin(DS)
6: Smaj — 0, Smin < 0
7: for each M € Majors do > Compression Step
8: C <« Clustering(M, |L|) > computing the centroids C of |L| clusters by using KMeans algorithm
9: M « Compress(M, C, ) > compressing majority samples using centroids C of L clusters
10: Smaj < Smaj UM
11: end for
12: for each M € Minors do > Zooming Step
13: for each m € range(K, K + %@“) do > Zooming Step, Ng . is number sample in Sy .
min

14: M « Zoom(m) > zoom range is [1 — 4,1+ 4+] on both continuous and categorical features.
15: Smin < Smin UM
16: end for
17: end for
18: 7= Esu Smaj Y Smin > synthese of new dataset T'
19: return (T)

e —

Raw dataset

Normalization

RandomSplit

> Testing set

S —
Raw train dataset

? r Web Application Server|

DBMS DMZ Network

Majority classes Minority classes

K-Means-based ;
Compression

— < %GI
Training set  |€ Attacker Network 1

(a) (b)

(N

®
Attacker Network 2 Attacker Network 3

Figure 2.1: (a) AWGAN-based data augmentation framework; (b) SQL injection attack generation testbed.
in CSV. Finally, categorical attributes are encoded via label encoding and one-hot encoding (using Keras),
ensuring compatibility with ML models such as GBM and neural networks.

2.4.3 Feature Normalization

Normalizing the features centers them around zero with a unit standard deviation, facilitating the learn-
ing process of the ML algorithm. This normalization technique helps speed up convergence and improve the

model’s overall performance.

2.4.4 SHAP-based Feature Set Optimization

Our method, Optimizing Features using SHAP (OFS), selects the most important subset of features from
training data by combining model performance with explainability. The general pseudocode to optimize the

set of features using SHAP is presented in

2.5 Experiments and Evaluation
2.5.1 Dataset Preparation
o DS1:CSE-CIC-IDS2018 and NSL-KDD datasets.

To augment SQL-injection detection, we also built a testbed system, as shown in to add

more detection ability. Finally, based on our dataset preparation process, we obtain two augmented
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Algorithm 2.2 AWGAN: Create the Training & Testing Sets by Augmented WGAN

Input: F - Raw Dataset, represented by a list of feature vectors.

r - ratio between training and testing sets; default is 7:3.

7 - maximum samples in a label.

Output: T - Training Set; V - Testing Set.

1: L « GetLabels(F) > Get all labels of dataset F.
2! F « Normalize(F) > Normalize all feature vectors.
3: (RT, V) « SplitTrainTest(F, r) > Split F randomly into the raw training set RT and testing set V with ratio of .
4: (Spaj> Smin) « GetClasses(RT) > Determine majority classes (Sy,q;) and minority classes (Syip,) from RT
5T« 0

6: for each M € Sm,aj do > Compression each majority class
7 C « Clustering(M, |L|) > Compute the centroids C of |L| clusters by using ENN
8: M + Select(M, C, ) > Compress majority samples using C of L clusters
9: T+ TUM

10: end for

11: for each M € S,,;, do > Generate samples for minority classes by WGAN
12: while |[M| < 7 do

13: S + WGAN _Sampling(M) > Generate new samples
14: M = Denoise(M, S) > Eliminate noise samples
15: end while > Repeat until get enough samples 7.
16: T+ TUM > Add realistic samples to T

17: end for
18: return (T, V)

Algorithm 2.3 OFS: Optimizing Feature Set Using SHAP

Input: DS - dataset with the feature set F; M - m AI models; 7 - threshold to drop features.

1: X,y « Ds > Get dataframes for features and labels
2! X <« Normalize(X) > Normalize all features to [0,1]
3t Fs« o > Init the feature set list.
4: for each m € M do > Determine the feature importance for each AI model m.
5: Al «— m.fit(X,y) > Train m using the dataset.
6: if m is a boosting model then

7: shap_wvaluesy + SHAP.TreeExzplainer(m) > Compute the SHAP values of all features based on decision tree model.
8:  else

9: shap valuesy, < SHAP.DeepExzplainer(m) > Compute the SHAP values of all features based on DL model.
10: end if

11: FS.push(shap_values ) > Push the Shapley values of the model M into the list FS.
12: end for

13: oFs « 0
14: for each f € F do

15: shap_values < FS[f] > Get SHAP values of feature f on all models M.
16: if shap_values > T then

17: OFS «+ OFSU f > Consider f being important and add to OFS in the case of all its SHAP values > .
18: end if

19: end for

Output: OFS - Optimized Feature Set.

datasets DS1, illustrated in Note that DS1 datasets will be comprehensively evaluated
in FlEpTer g

e DS2: We also selected CSE-CIC-IDS2018 and NSL-KDD to experimentally evaluate the effectiveness
of 2.2 Finally, Table 2.1 summarizes the number of samples for each class of both datasets.

e DS3: EMBER2017, EMBER2018, and BODMAS, to experimentally evaluate the effectiveness of [2.3]
the output constitute DS3.

We use six thresholds: 0.1, 0.075, 0.05, 0.25, 0.01, and 0.001. For each threshold, features with SHAP
values > the chosen threshold are selected, shown as [Figure 2.2l and [Figure 2.4h. We found that the

threshold of 0.025 gives the best result, shown as

2.5.2 Results and Evaluation

e S1: We thoroughly evaluate[2.1on the DS1 to investigate its effectiveness in addressing class imbalance.

e S2: The AWGAN is evaluated on DS2 to rigorously assess its ability to generate realistic and

diverse synthetic samples for minority classes.

e S3: The OFS[2.3]is examined using the DS3, with a focus on static malware detection tasks.
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Table 2.1: Comparison of difficulty-aware augmentation (a) and AWGAN-based augmentation (b)

(a) Difficulty- Aware-based Data Augmentation (b) AWGAN-based Data Augmentation

Class Original Train Test Class Original Train Test
CSE-CIC-IDS2018 CSE-CIC-IDS2018
Benign 4, 360, 029 20, 000 6, 000 Benign 4,360, 029 14, 000 6, 000
Bot 282, 310 20, 000 6, 000 Infiltration 160, 604 14, 000 6, 000
DDoS-HOIC 668, 461 20, 000 6, 000 Bot 282, 310 14, 000 6, 000
DoS-GoldenEye 41, 455 20, 000 6,000 DDoS-HOIC 668, 461 14, 000 6, 000
DoS-Hulk 434, 873 20, 000 6, 000 DoS-GoldenEye 41, 455 14, 000 6, 000
Infiltration 160, 604 20, 000 6, 000 DoS-Hulk 434, 873 14, 000 6, 000
SQL-Injection 26, 797 20, 000 6, 000 DoS-SlowHTTPTest 13,067 14, 000 4,082
DoS-SlowHTTPTest 19, 462 13,623 4,491 DosS-Slowloris 6,977 14, 000 2,093
DoS-Slowloris 10, 285 14, 826 2,373 DDoS-LOIC-UDP 1,120 14, 000 336
DDoS-LOIC-UDP 1,211 1,588 279 BruteForce-Web 261 14, 000 78
BruteForce-Web 253 978 58 BruteForce-XSS 97 14, 000 29
BruteForce-XSS 151 106 35 SQL-Injection 53 14, 000 17
NSL-KDD NSL-KDD
Benign 61, 343 20, 000 6, 000 Benign 61, 343 14, 000 6, 000
DoS 39,927 20, 000 6, 000 DoS 39,927 14, 000 6, 000
Probe 8,153 20, 000 1,881 Probe 8,333 14, 000 2, 500
R2L 697 4,467 161 R2L 637 14, 000 191
U2R 36 36 8 U2R 40 14, 000 12
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(a) XGB Feature Important Score (b) GBM Feature Important Score (c) CBT Feature Important Score (d) CNN Feature Important Score

Figure 2.2: SHAP-based Feature Important Scores on EMBER2018 Dataset

S1 Results

The summarized in [Table 2.11 The effect is also visible in the t-SNE visualizations: before and after the

balance shown in [Figure 2.5p, and [Figure 2.5p.
S2 Results

The summarizes the number of samples per class in both datasets. The individual models
shown as [Table 2.2] [Figure 2.6k show the original data before performing AWGAN-based augmentation,

while illustrate the augmented training sets.

Table 2.2: Evaluation of AT models on WGAN-based Data Augmentation (%)

. CSE-CIC-IDS2018 | NSL-KDD

Metric

XGB  CBT GBM  BME DNN | XGB CBT GBM BME DNN
F1 99.77 99.92 99.95 99.77 97.75 99.48 99.21 99.48 99.48 98.00
Acc 99.76  99.92  99.96  99.98  97.54 | 99.49  99.22  99.56  99.43  98.07
Prec 99.83  99.93  99.96  99.98  98.20 | 99.49  99.21  99.49  99.41  98.03
Rec 99.76  99.92  99.96  99.98  97.54 | 99.49  99.22  99.49  99.43  98.07
FPR o 0 0.03 o 0.13 0.67 1.27 0.63 0.77 1.22
FNR o) 0.01 o] o] 1.37 0.37 0.39 0.30 0.32 2.26
AUC 100 100 99.99 99.99 98.69 99.99 99.98 99.99 99.89 99.85




2.5.

0.980

0976

= 0074

0970

0.968

EXPERIMENTS AND EVALUATION 12

2
T 0.980 *
oses0
oan .
. posers]
Zomms H
g H
oss0
osme

0.982 e F1score 09675

09575
0972
0970 09550
0.968 s

0001 0010 0.025 0,050 0,075 0100 0001 0010 0.025 0.050 0.075 0.100 0001 0010 0.025 0.050 0075 0.100
Threshold Threshold Threshold

(a) XGB (b) GBM (c) CBT

Figure 2.3: Threshold-based Performances on EMBER2018 Dataset

CSE-CIC-IDS2018 \ NSL-KDD
Metric

DNN XGB GBM ‘ DNN XGB GBM

Acc 99.73  99.58 99.74 | 98.80 99.66 99.43
Prec 99.80 99.59 99.59 | 98.84 99.66 99.44
F1 99.66 99.58 99.58 | 98.80 99.66 99.43
Rec 99.73 99.58 99.58 | 99.80 99.66 99.43
AUC 99.96 100 100 99.84 100  99.92
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Figure 2.4: (a) Threshold-based performance on BODMAS dataset; (b) Evaluation results of AI models on

difficulty-aware data augmentation.

S3 Results

Table 2.3: Evaluation of AI models on Original Datasets(%)

Method F1 Acc Prec Sens FAR FNR

EMBER2017 Evaluation

XGB 99.16 99.16 99.16 99.16 0.84 0.84
CBT 99.27 99.27 99.27 99.27 0.73 0.73
GBM 98.67  98.67  98.67 98.67 1.33 1.33
CNN 95.95 96.04 93.72 9595 335 4.05

EMBER2018 Evaluation

XGB 97.63 97.63 97.63 97.63 237 2.37
CBT 97.19 9719 9719 9719 281 281
GBM 97.80 97.80 97.80 97.80 2.20 2.20
CNN 94.03 94.02 94.16 94.02 597 598

BODMAS Evaluation

XGB 98.71  98.69  99.68 97.75 0.32  2.25
CBT 98.94 98.93 99.88 98.02 0.12 1.98
GBM 98.90 98.89 99.94 9788 0.06 2.12
CNN 98.90 98.89 99.87 9796 0.13 2.04
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Figure 2.6: AWGAN-based visualization
Table 2.4: Evaluation of Al models based Features set Optimization (%)

Method | F1 Acc Prec Sens ~FAR FNR | F1 Acc Prec Sens  FAR  FNR
| BODMAS (4 features) | BODMAS (165 features)
XGB 89.76 90.78 85.19 94.85 4.82 5.15 99.28 99.39 99.28 99.28 0.61 0.72
CBT 89.76 90.77 85.17 94.86 4.83 5.14 99.26 99.37 99.29 99.23 0.71 0.77
GBM 89.76 90.78 85.16 94.89 4.80 5.11 99.13 99.26 99.09 99.16 0.74 0.84
CNN 88.03 88.95 81.77 95.34 4.66 4.66 99.13 99.26 99.02 99.24 0.76 0.74
EMBER2018 (170 features) EMBER2018 (565 features)
XGB 97.59 97.59 97.84 97.34 2.16 2.66 97.67 97.68 97.97 97.37 2.17 2.63
CBT 97.45 97.45 97.52 97.37 2.25 2.53 97.52 97.52 97.58 97.46 2.26 2.54
GBM 97.85 97.86 97.23 97.47 2.13 2.53 97.88 97.89 98.34 97.42 2.16 2.58
CNN 95.72 95.72 95.71 95.73 4.03 4.27 95.72 95.90 95.64 95.19 4.08 4.81

To evaluate the effectiveness of our feature optimization and data balancing strategies, we compare the
model performance in the original datasets shown in and in the optimized feature sets shown in
[Table 2.4 for EMBER2018 and BODMAS dataset.

2.6 Summary

These research results have been partially presented in published works, including three articles in
respected journals (VVH-J2, VVH-J1, VVH-j3) and two conference paper (VVH-C2, VVH-C4), highlighting
the novel and important contributions discussed in this chapter. Specifically, VVH-J2 presents an algorithm
that addresses the challenge of class imbalance in network intrusion datasets through data compression and
zooming techniques. VVH-J1 and VVH-C4 propose GAN-based methods capable of generating new samples
to augment the minority class, thus mitigating data imbalance. VVH-j3 introduces a feature optimization

approach to improve the quality of the dataset.



3 Enhancing Al-powered Intrusion Detection

with Mutual Deep and Boosting Inference

3.1 Problem Statement

Single-model approaches often result in unstable performance and weak resilience to adversarial threats.
To address this, we propose an ensemble framework combining deep and boosting models through soft voting
and stacking, improving accuracy, robustness, and efficiency. This unified approach enhances detection of

both common and sophisticated attacks, making it practical for real-world deployment.

3.2 Network Intrusion Detection via AI-Powered Deep Analysis

3.2.1 Direction Approach

We developed the SDAID solution, a comprehensive network intrusion detection approach that uses deep
Al-powered analysis to identify anomalous behavior, as illustrated in and
3.2.2 Network Traffic Flow Modeling

We propose using CICFlowMeter to perform the feature extraction task.

3.2.3 DNN-based Intrusion Detection Algorithm

Our DNN model is depicted in

3.2.4 Boosting-based Intrusion Detection Algorithm

Boosting algorithms, such as XGBoost, build models sequentially where each new tree corrects the
errors of the previous ones, achieving high accuracy and scalability. By tuning hyperparameters, we reduce

overfitting and enhance generalization.

3.2.5 Hyperparameter Optimization

We select the model parameters based on a technique called Hyperparameter Optimization [? ]. The

optimal values are also illustrated in

3.2.6 Experiments and Evaluation

For the experimental environment, we use the setup presented in
To evaluate PAID we perform the two scenarios described as follows:

e Scenario S1: CSE-CIC-IDS2018 dataset to train PAID.

e Scenario S2: We evaluate the PAID based on NSL-KDD.

14
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Figure 3.1: (a) Network intrusion detection using Al-powered deep analysis; (b) DNN-based intrusion detec-

tion.

Algorithm 3.1 PAID: Perform an Ensemble Learning for Al-powered Intrusion Detection

Model: XGB - XGB trained model; DNN - DNN trained model; GBM - GBM trained model
Input: f - traffic flow.

Output: (msg, [0C) - (alert message; generated new IoC)

1: R0

2: F « CICFlowMeter(f) > extract 83 features of traffic flow f
3: Fin « F\[FlowID, SrcIP, SrcPort, Label] > remove 4 unused features
4: Cats + [DstPort, Protocol] > Categorical Variables
5: Conts « Fin \ Cats > 77 Continuous Variables
6: Perform three processes P1,P2,P3:

7: p1: dnn_preds <~ DN N.predict(Cats, Conts) P> perform the prediction using DNN model
8: p2: xgb_preds + XGB.predict(Cats, Conts) > perform the prediction using XGB model
9: p3: gbm _preds <+ GBM.predict(Cats, Conts) > perform the prediction using GBM model

10: wait P1, P2, P3 finished.
11: avgs «+ (wgb_preds + dnn_preds + gbm_preds)/3)

12: FC « avgs.argmaz(azis = 1) > get the flow labels from 0 to 11
13: if FC! =0 then > classified as network attacks
14: msg + Alert(FC) D> constitute an alert by using metadata from the flow f; set alert category being as label
15: R + IoCGenerator(FC) > generate a new [oC to handle the next similar flows
16: ena if

17: return msg; IoC

S1 Results

The confusion matrix illustrates the results of our experiment performed with the PAID method, shown

in and the first part of

S2 Results

We consequently indicate this experiment results for the PAID as the confusion matrix shown in
and the second part of

3.2.7 Comparison with SOTAs

The comparison of intrusion detection performance between PAID and SOTA is summarized in
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Table 3.1: Hyperparameter Optimization

Model = Hyperparameter Value Optimal
Learning rate [0.001, 1.0] 0.003
Batch size [16, 32, 48, 64, 96, 128] 64
DNN
Epochs [1, 2, ..., 15, 16] 5
Layers [[200, 100], ..., [1000, 500]] [400, 200]
Learning rate [0,1] 0.01
XGB n_estimators [1,00] 30
max_ depth [0,00] 6
Learning rate [0,1] 0.02
GBM min_samples leaf [1,00] 30
max_depth [0,00] 9
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(a) Confusion matrix of S1 evaluation. ) ] )
(b) Confusion matrix of S2 evaluation.

Table 3.2: Confusion matrices of malware detection evaluations: (a) S1 dataset and (b) S2 dataset.

3.3 Malware Detection via Mutual Deep and Boosting Ensemble

Learning

3.3.1 Approach Direction

We apply ensemble learning, including soft voting and stacking, to build binary classification mod-
els for malware detection. The method we propose in this study is called MDOB, an acronym for “En-
hancing Resilient and Explainable AI-Powered Malware Detection using Feature Optimization and Mutual
Deep+Boosting Ensemble Learning. " illustrates the comprehensive architecture of our MDOB
method.

3.3.2 Mutual Deep and Boosting Learning

We propose a mutual learning that integrates deep learning (DL) and gradient boosting models (GBM)
for malware detection, leveraging AutoGluon for model selection, tuning, and optimization. By combining

both, our system enhances accuracy, robustness, and adaptability against evolving threats.
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Table 3.3: Performance Evaluation based Network Intrusion Detection

Metric $1 (CSE-CIC-IDS2018) | $2 (NSL-KDD)

DNN XGB GBM PAID | DNN XGB GBM  PAID
Acc 99.73  99.58  99.74  99.97 | 98.80  99.66  99.43  99.69
Prec 99.80  99.59 99.59  99.97 | 98.84 99.66 99.44  99.69
F1 99.66  99.58  99.58  99.97 | 98.80  99.66  99.43  99.69
Rec 99.73  99.58  99.58  99.97 | 99.80  99.66  99.43  99.69
AUC 99.96 100 100 100 99.84 100 99.92  99.99

Table 3.4: Comparison of PAID with other SOTA methods

Method Acc Prec F1 Rec

CSE-CIC-IDS2018-based Evaluation

PAID (our) 99.97 99.97 99.97 99.97
WGAN+IDR [? ] — 99 98 97

RANet [7 ] 96.73 - 96.59 96.73
Adaboost [? ] 99.69 99.70 99.70 99.69
Autoencoder [7? ] 99.20  95.00 - 98.90
AUE [7 ] 97.90 98.00 98.00 98.00

DSSTE + miniVGGNet [7 ] 96.99 97.46 97.04 96.97
LSTM + AM + SMOTE [? ] 96.20 96.00 93.00 96.00

NSL-KDD-based Evaluation

PAID (our) 99.69 99.69 99.69 99.69
Autoencoder [7 ] 99.20 - - 99.27
Multiple LSTM [? ] 98.94 - - 99.23
SMO [7 ] 96.20 - - -

RANet [? ] 83.23 - 82.57 83.23
DNN [? ] 78.50 81.00 76.50 78.50

3.3.3 Combination of Voting and Stacking Ensemble Learning

Algorithm 3.2 VSEL: Combination of Voting and Stacking Ensemble Learning

Input: TD = {(X?, yi)}i\’zl - training dataset with optimized features; MS = {My, Mg, ..., My, } - set of m base models; model _params - optimized
hyperparameters of m Al models; K - number of folds for building meta training dataset (MTD).

1: MTD «+ 0 > Init MTD
2: {TDy,TDy,....,TDg} + Split(TD, K) > Split the training dataset into K folds

3: for each fold k € 1..K do
4: TDyppin < TD\ TDy; TDy, <+ TDy > Use K — 1 folds for training and 1 fold for validation
5 for each M; € MS do

6: M; «+ Train(M;, T Dyyaiy , model _params[M;])

7 end for
8:
9

for each (X,y) € TD,, do

meta + 0; wvote_sum <+ 0 > Create the meta-feature vector
10: for cach M; € MS do
11: p; — M;(X) > Predict the probability for X using the trained base model M,
12: meta.push(p;)
135 vote _sum <— vote_sum —+ Pi
14: end for
15: Pvote < vote_sum/m > Calculate soft voting prediction from all base models
16: meta.push(pyote) > Add soft voting result as an additional feature m+1 in the meta-layer
17: MTD.push(meta, y) > Add the meta-feature vector and corresponding label to MTD
18: end for
19: end for
20: MM «~ AutoML.SelectBestModel(M T D) > Perform AutoML on MTD to select the best as the meta model
21: for each M; € MS do
22: M, + Train(M;, T D, model _params[M;]) > Retrain all base models on the whole training dataset to be used in final prediction
23: end for

Output: MS - n trained Al models; MM - trained meta model.

Our approach integrates voting and stacking learning to construct a more robust model using multiple
Al-based classifiers. This process is illustrated in

3.3.4 Hyperparameter Optimization

To optimize ML models in our approach, such as training individual models, we use Optuna [? |. This

work is done through
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Figure 3.2: Model architectures for malware detection: (a) overall MDOB-based malware detection frame-

work; (b) CNN-based malware classification module.

Algorithm 3.3 Hyperparameter Optimization using Optuna

Input: model - Al model; Dyrgin = (Xirgins Ytrain) - training set; Diegt = (Xtest, Ytest) - testing set; Nyp;,1s - number of trials; Tyimeout -

optimization timeout; params - list of hyperparameters.

1: function OBJECTIVE(trial)

2 model _params < {p1, P2, P3s-- > Pn} > Initialize dictionary of hyperparameters for the model
3 for p € params do > Use Optuna to suggest hyperparameter values for each parameter p
4 model _params[p] < trial.suggest_ (parameter _type)(“p", (min_value), (max_value))

5 end for

6: clf < model(**model _params) > Instantiate model with current parameters
7 clf. fit(X¢rain» Ytrain) > Train model on training data
8 preds « clf.predict(Xgest) > Make predictions on testing data
9 metric + performance metric(ygest, preds) > Compute evaluation metric
10: return metric

11: end function

12: Initialize an empty dictionary opt_params = 0

13: Optimize the objective function using Optuna:

14: study < optuna.create_study(direction = “mawximize”

15: study.optimize(objective, n_trials=Ny ia15: timeout=T¢imeout)

16: trial < study.best trial

17: opt_params « trial.params > Get optimized model parameters from the best trial

18: return opt params

Output: opt_params - optimized hyperparameters.

3.3.5 Experiments and Evaluation
We conducted two scenarios to evaluate MDOB, as detailed below.
e Scenario S1: The focus is on using the EMBER2018 dataset to evaluate our proposed MDOB method.

e Scenario S2: We evaluated our proposed MDOB method using the BODMAS dataset.

S1 Results

shows the fine-tuning of the CNN model. compares the Fl-score of different
models on the EMBER2018 dataset using 565 features.

S2 Results

The results, summarized in [Table 3.5] [Figure 3.3c| presents the F1-score performance on the BODMAS

dataset using 165 features.
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Figure 3.3: Comparative performances of CNN and ensemble models: (a) CNN training performance on
EMBER2018 (565 features); (b) EMBER2018-based performance (565 features); (¢) BODMAS-based per-

formance (165 features).
Table 3.5: Evaluation of Al models based Malware Detection (%)

Learning Method | F1 Acc Prec Sens FAR FNR | F1 Acc Prec Sens FAR FNR
| BODMAS (165 features) | EMBER 2018 (565 features)
XGB 99.28  99.39  99.28  99.28  0.61  0.72 | 97.67  97.68  97.97  97.37  2.17  2.63
Baceli CBT 99.26  99.37  99.20  99.23  0.71  0.77 | 97.52  97.52  97.58  97.46  2.26  2.54
aseline
GBM 99.13  99.26  99.09  99.16  0.74  0.84 | 97.88  97.89  98.34  97.42  2.16  2.58
CNN 99.13  99.26  99.02  99.24  0.76  0.74 | 95.72  95.90  95.64  95.19  4.08  4.81
Mutual DLM+GBM Voting | 99.32 9942  99.34 9930  0.66  0.70 | 98.02  97.89  98.38  97.65  2.03  2.35

Mutual Voting4Stacking MDOB 99.37 99.46 99.48 99.26 0.54 0.74 98.13 98.14 98.58 97.68 1.93 2.32

Table 3.6: Comparison of MDOB with SOTA Methods (%)

Method Venue Acc Prec F1 Sens
EMBER2018
MDOB (our) - 98.14 98.58 98.13 97.68
AutoML [7 ] Computers & Security 2024 95.80 - 95.80 -
dualFFNN k-medoids [? ] Computers & Security 2023 98.02 - - -
Consensus [? ] CMC 2023 96.77 - 96.77 -
DL [? ] Telecom 2023 95.57 - - -
MLMD [? ] CAT 2023 97.42 - - -
DNN [?7] IJNIS 2022 94.09 90.14 88.66 88.85
BODMAS
MDOB (our) - 99.46 99.48 99.37 99.26
EII-MBS [?7 ] Computers & Security 2022 99.29 98.26 94.23 98.07
MD-ADA [?7 ] Computers & Security 2024 99.29 - 99.13 —
FCG-MFD [7 ] JNCA 2025 99.28 — 99.14 —

3.3.6 Comparison with SOTAs

The comparison of malware detection implementations between MDOB and SOTA is summarized in

[Table 3.6l
3.4 Summary

In this chapter, we focus on improving the performance and robustness of intrusion and malware detection
systems through ensemble learning and mutual interaction among machine learning models. Building on the
enhanced datasets developed in this chapter addresses the limitations of individual models and
proposes a unified framework that takes advantage of the complementary strengths of both deep learning

and modern boosting algorithms.



4 Holistic Large-Scale Al-powered Intrusion
Prevention with Flow Sensing Strategy and

Parallel Ensemble Inference

4.1 Problem Statement

Traditional signature or standalone DL models are limited by latency and adaptability, often underper-
forming against evolving attacks in large-scale networks. To overcome these issues, we propose NetIPS, a
proactive intrusion prevention system that integrates flow sensing, parallel inference, and lightweight user-

space architecture.

4.2 Proposed Holistic Intrusion Detection Framework
4.2.1 Approach Direction

Our comprehensive intrusion detection approach uses deep Al-powered analysis to identify anomalous

behavior and signatures of previous intrusions, namely APELID, as illustrated in [Figure 4.1] and

4.2.2 Parallel Ensemble Inference-based Intrusion Detection

Two ideas motivated our intrusion detection method: the ensemble learning approach and parallel com-

puting. shows our PELID algorithm.

4.2.3 Strategy for Al-powered real-time intrusion detection

For large-scale network traffic, the deep analysis certainly causes the stuck of IDPS. Therefore, we propose
an efficient strategy to sense the traffic flows. Thus, we control the periodic deep analysis sampling strategy
using 6 variables: DI Cwycle, DIC Min, DIC Max, and DI Window, DIW Min, DIW Max.
4.2.4 Hunting Malware by Sandbox Approach

In order to improve the capability to detect malicious files transferred over the network, our proposed

APELID solution is integrated with a MalwareAnalyzer based on a sandbox approach, as illustrated in

illustrates our strategy to analyze and identify this malware file.

4.3 Experiments and Evaluation
1. RQ1: Does combining multiple AT models of PELID, both traditional ML and DL, allow enhancing

the performance of network intrusion detection and reducing analysis time?
2. RQ2: When deploying an IDPS inline system in an intranet with large-scale network traffic, is it

fast enough to conduct a deep analysis of network flows for intrusion detection with the AT model

generated by the APELID method to ensure that network flows are handled in real time?
3. RQ3: Is it possible to implement malware file detection in the inline IDPS system combined with deep

analysis based on the Al model?

4.3.1 Experimental Results
CSE-CIC-IDS2018-based Results

The detailed results of the CSE-CIC-IDS2018 experiment are illustrated in the first part of
and the confusion matrix shown in [Table 4.Th.
20
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Figure 4.1: Architecture of Holistic Intrusion Detection

Algorithm 4.1 Holistic intrusion Detection by flow sensing strategy and deep analysis

Input: f - Traffic In Flow, S - Signature Set, Sensing - perform Al-powered deep analysis or not, F - Files that transfer between network.
Output: f, msg, S - (Traffic Out Flow; Alert Message; Updated Signature Set)

1: action + RuleBasedDetector(f, S)

2! ToCgep + 0

3: if action = Drop/Reject then > Drop/Reject flow due of a detected critical attack
4 Drop/Reject(f)

5: msg +' Critical Attack’

6 return (none, msg, S)

7: else if action = Alert then > Generate an alert
8

msg +' Alert based on_Signature’

9: else if action = Pass then > Stop further inspection of the flow
10: msg < None

11: else if Sensing = True then > f does not match any rules, then Al-powered deep analysis is triggered by the sensing mechanism
12: (ms9geeps 10Cgeep) — DeepAnalyzer(f) > Inspect F deeply by PELID and return a message and new IoC if an intrusion attack is detected.
13: I0Cget « 10Cget U ToCqeep > Update T0Cge¢ with new indication of compromise 10Cgeep
14: end if

15: for eacht € F do

16: (msgy, [0Cy) + MalwareAnalyzer(t) > Analysis ¢t deeply by Sandbox return a message and new IoCy if an malware file is detected.
17: IoCget + I0oCget U T0oCy > Update ToCget with new indication of compromise IoCy
18: end for

19: s « S UToCget > Update S with new indication of compromise IoCge¢

20: return (f, msg, S)

NSL-KDD-based Results

The second part of [Table 4.2 shows the experimental results by using NSL-KDD dataset, and
presents the PELID model’s confusion matrix.

Malware Hunting Results

This scenario includes two completely separate networks: DMZ Network (including Web server (HTTP
and FTP), Mail Server (SNMP), and Attacks-Network), shown as [Table 4.3a. We compared the experimental

results with Virus Total (VT), shown in [Table 4.3p.

4.3.2 Evaluation
Efficacy of PELID in Intrusion Detection

Compared with individual AI models, as illustrated in [Table 4.2] These results privilege us to respond
to RQ1: combining multiple AT models of PELID allow for improved network intrusion detection.

Efficacy of PELID in Time Consumption

shows that the average time the PELID prediction, RQ2 RQ3 has been resolved by all
these experimental results show more in Table

4.3.3 Comparison with SOTAs

7?7 demonstrates that APELID outperforms SOTA and achieves the greatest scores across all evaluation

metrics to answering RQ1.
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Algorithm 4.2 PELID: Parallel Ensemble Learning-based Intrusion Detection

Model: XGB, GBM, CBT, BME, DNN - XGB, GBM, CBT, BME and DNN trained model, and their ensemble weight w; where 2?:1 w; = 1.
Input: f - traffic flow.

Output: (msg, R) - (alert messages; new generated rules)

1: R0

2! F « Featurize(f) > Extract features of traffic flow f.
3: Fin « Normalize(F) > Perform the feature engineering: remove unused features and normalize the rest.
4: Cats « [DstPort, Protocol] > Categorical variables
5: Conts « Fin \ Cats > Continuous variables
6: Perform in parallel five processes P1, P2, P3, P4, P5:

7: P1: pXGB « XGB.predict(Cats, Conts) > Perform the prediction using X GB.
8: p2: pGBM <+ GBM.predict(Cats, Conts) > Perform the prediction using GBM.
9: p3: pCBT «+ CBT.predict(Cats, Conts) > Perform the prediction using CBT.
10: P4: pBME «+ BME.predict(Cats, Conts) > Perform the prediction using BME.
11: P5: pDNN + DNN.predict(Cats, Conts) > Perform the prediction using DN N.

12: wait P1, P2, P3, P4, P5 finished.
13: scores « (pXGB * wy + pGBM % wy 4+ pCBT % wg + pPBME % wy + pDNN * wg)

14: FC « scores.argmaz(azis = 1) > Get the flow predicted label.
15: if FC! =0 then b Classified as network attacks
16: msg « Alert(FC, f) > Generate an alert by using metadata from the flow f; set alert category being as predicted label.
17: R «+ RuleGenerator(FC, f) > Generate a new signature based on its indicator of compromise.
18: end if

19: return msg; R

Algorithm 4.3 Malware Detection

Input: F - New files transferred in network and accumulated in FileStore folder.

Output: (msg, R) - (Alert Message, New Rules generated based malware detected files).

1: Ready + Wait Sandbox _Ready > Blocking-function until Sandbox is ready.
2: IngestFiles(F) > Send F in the FileStore folder to Sandbox
3: score = HybridAnalyzer(F) > Determine the overall score of both static and dynamic analysis.
4: if score > 7 then > Critical suspicious file
5: R + RuleGenerator(F) > Update the rule to block connection.
6: msg + ‘Detected_Malware Files’

7: return msg, R

8: end if

4.4 NetIPS: Deployment of Network Intrusion Detection and Pre-

vention
4.4.1 Deployment Model

The architecture is illustrated in and divided into three layers. The lower layer is the
network hardware, including SmartNIC (network accelerator) and traditional network interfaces, used to

analyze traffic and manage the NetIPS.
4.4.2 Hypermatching for Signature-based Detector

In the Rule-based Detector, the Hyperscan technique is utilized to enhance the efficacy of the ruleset

matching procedure. It matches more effectively than other methods (such as Aho-Corasick, Boyer-Moore).

4.4.3 Accelerating Al-powered Intrusion Detection in User Space

In NetIPS, packet handling is optimized by replacing traditional NICs with a Napatech SmartNIC and
leveraging the DPDK library to bypass kernel overhead, reducing context switching and latency.

4.5 Summary

Chapter 4 addresses the critical challenge of deploying Al-powered intrusion detection and prevention
systems in large-scale, real-world environments, where requirements for real-time performance, scalability,
and operational reliability are paramount. Building upon the data enhancements and ensemble modeling in-
novations developed in previous chapters, this chapter introduces and evaluates a comprehensive architecture

for practical, high-throughput network defense.
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Table 4.1: Confusion matrices of PELID model: (a) CSE-CIC-IDS2018 and (b) NSL-KDD.
Table 4.2: Evaluation of AT models based PELID (%)
i CSE-CIC-1DS2018 | NSL-KDD
Metric
X@GB CBT GBM BME DNN PELID | XGB CBT GBM BME DNN PELID
F1 99.77  99.92  99.95  99.77  97.75 99.99 99.48  99.21  99.48  99.48  98.00 99.63
Acc 99.76  99.92  99.96  99.98  97.54 99.99 99.49  99.22  99.56  99.43  98.07 99.65
Prec 99.83  99.93  99.96  99.98  98.20 99.99 99.49  99.21  99.49  99.41  98.03 99.65
Rec 99.76  99.92  99.96  99.98  97.54 99.99 99.49  99.22  99.49  99.43  98.07 99.65
FPR 0 0 0.03 0 0.13 0 0.67 1.27 0.63 0.77 1.22 0.37
FNR 0 0.01 0 0 1.37 0 0.37 0.39 0.30 0.32 2.26 0.34
AUC 100 100 99.99  99.99  98.69 100 99.99  99.98 99.99  99.89  99.85 99.99
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Figure 4.2: (a) malware hunting scenario, (b) parallel vs sequential processing, and (¢) APELID-based NetIPS

()

architecture.
(a) (b)
N Malware Type Hash vT APELID
Method Acc Prec F1 Rec
1 QuasarRAT exe 832ab3a898d188426d3541e1533b55f9 56/68 Yes
2 Loki .xlsx 5b6aec60c3bed724f7980a659206531a. 29/58 Yes CSE-CIC-IDS2018
3 STRRAT jar 2199150e7d79d0e831cda314c7ce6f56 28/62 Yes APELID (ours) 99.99 99.99 99.99 99.99
4 AsynRAT doc da6419e4d4e4528990898bcfdaa85e01 32/60 Yes MMM-RF 99.98 _ _ _
5 SnakeKeylogger exe 715b0f6390bad387a4155c¢1d59a3669¢ 49/69  Yes GAN-4RF 99.83 98.68 95.04 92.76
6 AgentTesla exe 5c590fcb32aedecl16532aa857eec28b5, 40/66 Yes KNN-MQBHOA 99.78 99.56 99.65 99.87
7 OskiStealer xlsx 6a29203346218dded19d0a8aldee24023 20/59 Yes HDLNIDS 98.90 98.63 99.03 99.14
8 NanoCore exe 4bael8ac4aT73ff38f7ed718365e6¢c2b2 41/67 Yes CNN 98.17 95.00 94.00 95.00
9 DanaBot exe 5f4731a4ef7d1484893213caaf6a6685 42/69 Yes AUE 97.90 98.00 98.00 98.00
10 DCRAT .exe €a800644b9dfd027807447fdd98241aa 50/68 Yes miniVGGNet 96.99 97.46 97.04 96.97
11 YellowCockatoo .dll df7b2ece343c52df774d72e12ea09009 51/69 Yes
12 RemoteManipulator exe 4c5649e9b9a2d9997ac2600a804e0aeh 41/68  Yes NSL-KDD
13 Pony exe ab468a5b5cd9470c0895097efa2a687f 63/71 Yes APELID (ours) 99.65 99.65 99.63 99.65
14 Stealc exe cea30f806e644cebed8399¢cefald45e51 47/71 Yes KNN-MQBHOA 99.00 99.00 97.00 98.00
15 njRat exe b17414d6949c2e013del4fdc268cfc89 65/71 Yes FFO-PNN 98.99 96.97 96.97 96.97
16 RedLineStealer exe 8a61€10948c23a9a5c¢353d28b8738490 35/71 Yes DLNID 90.73 86.38 89.65 93.17
17 Guildma zip 8a61€10948c23a9a5c¢353d28b8738490 35/71 Yes GMM-WGAN-IDS 86.59 88.55 86.88 86.59
18 Gozi BE 1df2e7a13459223b2cc55b93744add77 24/71 Yes Adaptive-Ensemble 85.20 86.50 86.50 85.20
19 DarkTortilla exe 1c354a83f81063dc75612a9a7bd51225 54/71 Yes CAFE-CNN 83.34 85.35 82.60 83.44
20 VectorStealer xlsx 5b47098al7ecd534del5df03b12beach 40/71 Yes

Table 4.3: (a) Malware hunting results detected by APELID in the wild; (b) Comparison of APELID per-

formance with state-of-the-art intrusion detection methods on CSE-CIC-IDS2018 and NSL-KDD datasets.
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Conclusions and Future Work
Contribution Highlights

e Propose a machine learning pipeline with data augmentation and feature optimization (WGAN-
powered augmentation + SHAP-based feature optimization) to balance and enhance the quality of

training datasets, thereby improving the detection capability for minority-class attacks.

e Introduce a deep and boosting mutual inference framework that strengthens the accuracy and re-

silience of intrusion and malware detection systems.

e Propose a solution to address data bottlenecks in large-scale network intrusion prevention through a
time-interval and frequency-based flow sensing strategy, combined with parallelized inference of deep

and boosting mutual inference models.

e Integrate the proposed methods into the NetIPS real-time intrusion detection and prevention system,
which leverages Al-based models at the user level to process high-volume traffic (on a large scale),

making it suitable for enterprise and ISP networks.

Dissertation Limitations

e All tests were performed using fixed datasets that were prepared in advance, which means that we

cannot see how well the model would adapt to real-life situations or when the data change over time.

e The NetIPS component has not yet been extensively validated in various real-world scenarios. In
particular, comprehensive evaluations of hardware performance and deployment feasibility have not

been conducted in large-scale production networks.

e The current experimental design does not include ablation studies to quantify the contribution of
individual components or techniques to the overall performance. Such evaluations could provide more

details on the effectiveness of the system and guide future optimizations.

e The models were trained primarily on structured network or PE data. More complex attack vectors,

such as encrypted traffic, multistage malware, etc.., were not within the scope of this study.

Future Research Directions

e Online and continuous learning: Integrating online learning methods and incremental retraining into
detection pipelines could allow models to adapt to evolving threats and handle dynamic environments

more effectively.

e Future systems could use different types of data, such as how hosts behave, process trees, user activ-

ities, and patterns in encrypted traffic, all within a single detection framework.

e Automated response and defense integration: Improving detection systems with immediate actions,
like automatically blocking threats, updating rules, or prioritizing alerts, can connect simple detection

with active defense.

e Making it easier to understand decisions: Creating simple and user-friendly tools that explain how
Al systems work, particularly for endpoint systems, can build trust and help security analysts work

better with Al tools.
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